Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Publication year range
1.
Am J Transplant ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366509

ABSTRACT

Abdominal normothermic regional perfusion (aNRP) is an in situ normothermic oxygenated donor perfusion technique before procurement during controlled donation after circulatory death (cDCD) procedures and allows for organ quality evaluation. There are few data on the effect of aNRP on pancreatic islet isolation and subsequent transplantation outcomes. We aim to evaluate the impact of aNRP on cDCD pancreatic islet isolation and transplantation. A retrospective analysis was performed on pancreatic islet isolation outcomes from aNRP, cDCD, and donation after brain death pancreases. Isolations were compared to previous donor age (60-75 years) matched isolations. Islet function was assessed by a dynamic glucose-stimulated insulin secretion. Donor baseline characteristics did not differ among groups. Isolations from aNRP pancreases (471 739 islet equivalents [IEQ] [655 435-244 851]) yielded more islets compared to cDCD (218 750 IEQ [375 951-112 364], P < .01) and to donation after brain death (206 522 IEQ [385 544-142 446], P = .03) pancreases. Dynamic glucose-stimulated insulin secretion tests in 7 aNRP islet preparations showed a mean stimulation index of 4.91, indicating good functionality. Bilirubin and alanine aminotransferase during aNRP correlated with islet yield (r2 = 0.685, P = .002; r2 = 0.491, P = .016, respectively). Islet isolation after aNRP in cDCD donors results in a high islet yield with viable functional islets. aNRP could increase the utilization of the pancreases for islet transplantation.

2.
Am J Transplant ; 24(7): 1172-1179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38215981

ABSTRACT

Renal ex vivo normothermic machine perfusion (NMP) is under development as an assessment tool for high-risk kidney grafts and as a means of achieving more physiologically accurate organ preservation. On-going hemolysis has been reported during NMP, as this technique relies on red blood cells for oxygen delivery. In this study, we confirm the occurrence of progressive hemolysis during 6-hour kidney NMP. NMP-associated erythrostasis in the glomeruli and in peri-glomerular vascular networks points to an interaction between the red blood cells and the graft. Continuous hemolysis resulted in prooxidative changes in the perfusate, which could be quenched by addition of fresh frozen plasma. In a cell-based system, this hemolysis induced redox stress and exhibited toxic effects at high concentrations. These findings highlight the need for a more refined oxygen carrier in the context of renal NMP.


Subject(s)
Erythrocytes , Kidney Transplantation , Organ Preservation , Oxygen , Perfusion , Erythrocytes/metabolism , Organ Preservation/methods , Oxygen/metabolism , Humans , Hemolysis , Animals , Male , Kidney/metabolism
3.
Article in English | MEDLINE | ID: mdl-37968135

ABSTRACT

Fibrotic disease are characterized by the uncontrolled accumulation of extracellular matrix (ECM) components leading to disruption of tissue homeostasis. Myofibroblasts as main ECM-producing cells can originate from various differentiated cell types after injury. Particularly, the process of endothelial-to-mesenchymal transition (endMT), describing phenotypic shifts of endothelial cells (ECs) to adopt a fully mesenchymal identity, may contribute to the pool of myofibroblasts in fibrosis, while leading to capillary rarefaction and exacerbation of tissue hypoxia. In renal disease, incomplete recovery from acute kidney injury (AKI) and the ensuing fibrotic reaction stand out as major contributors to chronic kidney disease (CKD) development. While the focus has largely been on impaired tubular epithelial repair as a potential fibrosis-driving mechanism, alterations in the renal microcirculation post-AKI, and in particular endMT as a maladaptive response, could hold equal significance. Dysfunctional interplays among various cell types in the kidney microenvironment can instigate endMT. Transforming growth factor beta (TGF-ß) signaling, with its downstream activation of canonical/Smad-mediated and non-canonical pathways, has been identified as primary driver of this process. However, non-TGF-ß-mediated pathways involving inflammatory agents and metabolic shifts in intercellular communication within the tissue microenvironment can also trigger endMT. These harmful, maladaptive cell-cell interactions and signaling pathways offer potential targets for therapeutic intervention to impede endMT and decelerate fibrogenesis such as in AKI-CKD progression. Presently, partial reduction of TGF-ß signaling using anti-diabetic drugs or statins may hold therapeutic potential in renal context. Nevertheless, further investigation is warranted to validate underlying mechanisms and assess positive effects within a clinical framework.

4.
Transpl Int ; 36: 11505, 2023.
Article in English | MEDLINE | ID: mdl-37692453

ABSTRACT

The purpose of pancreas or islet transplantation is to restore glycemic control in order to mitigate diabetes-related complications and prevent severe hypoglycemia. Complications from chronic pancreas allograft rejection may lead to transplantectomy, even when the endocrine function remains preserved. We present first evidence of a successful HLA incompatible islet re-transplantation with islets isolated from a rejecting pancreas allograft after simultaneous kidney pancreas transplantation. The pancreas allograft was removed because of progressively painful pancreatic panniculitis from clinically uncontrolled chronic rejection. The endocrine function was preserved. Induction treatment for this "islet alloautotransplantation" consisted of plasmapheresis, IVIg and alemtuzumab. At 1 year, the patient retained islet graft function with good glycemic control and absence of severe hypoglycemia, despite persistent low-grade HLA donor-specific antibodies. His panniculitis had resolved completely. In our point of view, islet alloautotransplantation derived from a chronically rejecting pancreas allograft is a potential option to salvage (partial) islet function, despite preformed donor-specific antibodies, in order to maintain stable glycemic control. Thereby it protects against severe hypoglycemia, and it potentially mitigates kidney graft dysfunction and other diabetes-related complications in patients with continued need for immunosuppression and who are otherwise difficult to retransplant.


Subject(s)
Hypoglycemia , Pancreas , Humans , Transplantation, Homologous , Kidney , Antibodies , Allografts
5.
Transpl Int ; 36: 11633, 2023.
Article in English | MEDLINE | ID: mdl-37822447

ABSTRACT

The field of transplantation has witnessed the emergence of Advanced Therapy Medicinal Products (ATMPs) as highly promising solutions to address the challenges associated with organ and tissue transplantation. ATMPs encompass gene therapy, cell therapy, and tissue-engineered products, hold immense potential for breakthroughs in overcoming the obstacles of rejection and the limited availability of donor organs. However, the development and academic research access to ATMPs face significant bottlenecks that hinder progress. This opinion paper emphasizes the importance of addressing bottlenecks in the development and academic research access to ATMPs by implementing several key strategies. These include the establishment of streamlined regulatory processes, securing increased funding for ATMP research, fostering collaborations and partnerships, setting up centralized ATMP facilities, and actively engaging with patient groups. Advocacy at the policy level is essential to provide support for the development and accessibility of ATMPs, thereby driving advancements in transplantation and enhancing patient outcomes. By adopting these strategies, the field of transplantation can pave the way for the introduction of innovative and efficacious ATMP therapies, while simultaneously fostering a nurturing environment for academic research.


Subject(s)
Cell- and Tissue-Based Therapy , Tissue Engineering , Humans , Genetic Therapy
6.
Transpl Int ; 36: 11374, 2023.
Article in English | MEDLINE | ID: mdl-37547751

ABSTRACT

The advent of Machine Perfusion (MP) as a superior form of preservation and assessment for cold storage of both high-risk kidney's and the liver presents opportunities in the field of beta-cell replacement. It is yet unknown whether such techniques, when applied to the pancreas, can increase the pool of suitable donor organs as well as ameliorating the effects of ischemia incurred during the retrieval process. Recent experimental models of pancreatic MP appear promising. Applications of MP to the pancreas, needs refinement regarding perfusion protocols and organ viability assessment criteria. To address the "Role of pancreas machine perfusion to increase the donor pool for beta cell replacement," the European Society for Organ Transplantation (ESOT) assembled a dedicated working group comprising of experts to review literature pertaining to the role of MP as a method of improving donor pancreas quality as well as quantity available for transplant, and to develop guidelines founded on evidence-based reviews in experimental and clinical settings. These were subsequently refined during the Consensus Conference when this took place in Prague.


Subject(s)
Organ Preservation , Organ Transplantation , Humans , Organ Preservation/methods , Pancreas , Perfusion/methods , Tissue Donors
7.
Transpl Int ; 35: 10167, 2022.
Article in English | MEDLINE | ID: mdl-35462792

ABSTRACT

Assessment of specific ß-cell death can be used to determine the quality and viability of pancreatic islets prior to transplantation and hence predict the suitability of the pancreas for isolation. Recently, several groups have demonstrated that unmethylated insulin (INS)-DNA is correlated to ß-cell death in type 1 diabetes patients and during clinical islet isolation and subsequent transplantation. Here, we present a step-by-step protocol of our novel developed method for quantification of the relative amount of unmethylated INS-DNA using methylation sensitive restriction enzyme digital polymerase chain reaction This method provides a novel and sensitive way to quantify the relative amount of ß-cell derived unmethylated INS-DNA in cellular lysate. We therefore suggest that this technique can be of value to reliably determine the purity of an islet preparation and may also serve as a measure of the quality of islets prior to transplantation measuring unmethylated INS-DNA as a reflection of the relative amount of lysed ß-cells.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , DNA/genetics , DNA/metabolism , DNA Methylation , Humans , Insulin/metabolism , Insulin-Secreting Cells/physiology , Polymerase Chain Reaction
8.
Kidney Int ; 100(2): 301-310, 2021 08.
Article in English | MEDLINE | ID: mdl-33857572

ABSTRACT

Normothermic machine perfusion (NMP) is emerging as a novel preservation strategy. During NMP, the organ is maintained in a metabolically active state that may not only provide superior organ preservation, but that also facilitates viability testing before transplantation, and ex situ resuscitation of marginal kidney grafts. Although the prevailing perfusion protocols for renal NMP are refined from initial pioneering studies concerning short periods of NMP, it could be argued that these protocols are not optimally tailored to address the putatively compromised metabolic plasticity of marginal donor grafts (i.e., in the context of viability testing and/or preservation), or to meet the metabolic prerequisites associated with prolonged perfusions and the required anabolic state in the context of organ regeneration. Herein, we provide a theoretical framework for the metabolic requirements for renal NMP. Aspects are discussed along the lines of carbohydrates, fatty acids, amino acids, and micronutrients required for optimal NMP of an isolated kidney. In addition, considerations for monitoring aspects of metabolic status during NMP are discussed.


Subject(s)
Kidney Transplantation , Organ Preservation , Kidney , Kidney Transplantation/adverse effects , Perfusion
9.
Am J Transplant ; 21(9): 3077-3087, 2021 09.
Article in English | MEDLINE | ID: mdl-33565712

ABSTRACT

Due to a shortage of donation after brain death (DBD) organs, donation after circulatory death (DCD) is increasingly performed. In the field of islet transplantation, there is uncertainty regarding the suitability of DCD pancreas in terms of islet yield and function after islet isolation. The aim of this study was to investigate the potential use of DCD pancreas for islet transplantation. Islet isolation procedures from 126 category 3 DCD and 258 DBD pancreas were performed in a 9-year period. Islet yield after isolation was significantly lower for DCD compared to DBD pancreas (395 515 islet equivalents [IEQ] and 480 017 IEQ, respectively; p = .003). The decrease in IEQ during 2 days of culture was not different between the two groups. Warm ischemia time was not related to DCD islet yield. In vitro insulin secretion after a glucose challenge was similar between DCD and DBD islets. After islet transplantation, DCD islet graft recipients had similar graft function (AUC C-peptide) during mixed meal tolerance tests and Igls score compared to DBD graft recipients. In conclusion, DCD islets can be considered for clinical islet transplantation.


Subject(s)
Islets of Langerhans Transplantation , Tissue and Organ Procurement , Brain Death , Death , Graft Survival , Humans , Pancreas , Retrospective Studies , Tissue Donors
10.
Transpl Int ; 34(8): 1397-1407, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34036616

ABSTRACT

Due to an increasing scarcity of pancreases with optimal donor characteristics, islet isolation centers utilize pancreases from extended criteria donors, such as from donation after circulatory death (DCD) donors, which are particularly susceptible to prolonged cold ischemia time (CIT). We hypothesized that hypothermic machine perfusion (HMP) can safely increase CIT. Five human DCD pancreases were subjected to 6 h of oxygenated HMP. Perfusion parameters, apoptosis, and edema were measured prior to islet isolation. Five human DBD pancreases were evaluated after static cold storage (SCS). Islet viability, and in vitro and in vivo functionality in diabetic mice were analyzed. Islets were isolated from HMP pancreases after 13.4 h [12.9-14.5] CIT and after 9.2 h [6.5-12.5] CIT from SCS pancreases. Histological analysis of the pancreatic tissue showed that HMP did not induce edema nor apoptosis. Islets maintained >90% viable during culture, and an appropriate in vitro and in vivo function in mice was demonstrated after HMP. The current study design does not permit to demonstrate that oxygenated HMP allows for cold ischemia extension; however, the successful isolation of functional islets from discarded human DCD pancreases after performing 6 h of oxygenated HMP indicates that oxygenated HMP may be a useful technology for better preservation of pancreases.


Subject(s)
Diabetes Mellitus, Experimental , Organ Preservation , Animals , Feasibility Studies , Humans , Mice , Pancreas , Perfusion , Prospective Studies
11.
Transpl Int ; 34(7): 1182-1186, 2021 07.
Article in English | MEDLINE | ID: mdl-34048106

ABSTRACT

Allogeneic islet transplantation is a standard of care treatment for patients with labile type 1 diabetes in many countries around the world, including Japan, the United Kingdom, Australia, much of continental Europe, and parts of Canada. The United States is now endorsing islet cell treatment for type 1 diabetes, but the FDA has chosen to consider islets as a biologic that requires licensure, making the universal implementation of the procedure in the clinic very challenging and opening the manufacture of islet grafts to private companies. The commercialization of human tissues raises significant legal and ethical issues and ironically leads to a situation where treatments developed as a result of the scientific and economic efforts of academia over several decades become exploited exclusively by for-profit entities.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Australia , Diabetes Mellitus, Type 1/surgery , Europe , Humans , Japan , United Kingdom , United States , United States Food and Drug Administration
12.
Am J Transplant ; 19(5): 1328-1343, 2019 05.
Article in English | MEDLINE | ID: mdl-30506641

ABSTRACT

The bioengineering of a replacement kidney has been proposed as an approach to address the growing shortage of donor kidneys for the treatment of chronic kidney disease. One approach being investigated is the recellularization of kidney scaffolds. In this study, we present several key advances toward successful re-endothelialization of whole kidney matrix scaffolds from both rodents and humans. Based on the presence of preserved glycosoaminoglycans within the decelullarized kidney scaffold, we show improved localization of delivered endothelial cells after preloading of the vascular matrix with vascular endothelial growth factor and angiopoietin 1. Using a novel simultaneous arteriovenous delivery system, we report the complete re-endothelialization of the kidney vasculature, including the glomerular and peritubular capillaries, using human inducible pluripotent stem cell -derived endothelial cells. Using this source of endothelial cells, it was possible to generate sufficient endothelial cells to recellularize an entire human kidney scaffold, achieving efficient cell delivery, adherence, and endothelial cell proliferation and survival. Moreover, human re-endothelialized scaffold could, in contrast to the non-re-endothelialized human scaffold, be fully perfused with whole blood. These major advances move the field closer to a human bioengineered kidney.


Subject(s)
Bioengineering , Endothelium, Vascular/cytology , Extracellular Matrix/physiology , Induced Pluripotent Stem Cells/cytology , Kidney Transplantation/methods , Kidney/cytology , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Endothelium, Vascular/metabolism , Glycosaminoglycans/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kidney/metabolism , Rats , Rats, Inbred Lew
13.
Nephrol Dial Transplant ; 33(2): 224-230, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28992141

ABSTRACT

Background: Obesity and type 2 diabetes have not only been linked to fatty liver, but also to fatty kidney and chronic kidney disease. Since non-invasive tools are lacking to study fatty kidney in clinical studies, we explored agreement between proton magnetic resonance spectroscopy (1H-MRS) and enzymatic assessment of renal triglyceride content (without and with dietary intervention). We further studied the correlation between fatty kidney and fatty liver. Methods: Triglyceride content in the renal cortex was measured by 1H-MRS on a 7-Tesla scanner in 27 pigs, among which 15 minipigs had been randomized to a 7-month control diet, cafeteria diet (CAF) or CAF with low-dose streptozocin (CAF-S) to induce insulin-independent diabetes. Renal biopsies were taken from corresponding MRS-voxel locations. Additionally, liver biopsies were taken and triglyceride content in all biopsies was measured by enzymatic assay. Results: Renal triglyceride content measured by 1H-MRS and enzymatic assay correlated positively (r = 0.86, P < 0.0001). Compared with control diet-fed minipigs, renal triglyceride content was higher in CAF-S-fed minipigs (137 ± 51 nmol/mg protein, mean ± standard error of the mean, P < 0.05), but not in CAF-fed minipigs (60 ± 10 nmol/mg protein) compared with controls (40 ± 6 nmol/mg protein). Triglyceride contents in liver and kidney biopsies were strongly correlated (r = 0.97, P < 0.001). Conclusions: Non-invasive measurement of renal triglyceride content by 1H-MRS closely predicts triglyceride content as measured enzymatically in biopsies, and fatty kidney appears to develop parallel to fatty liver. 1H-MRS may be a valuable tool to explore the role of fatty kidney in obesity and type 2 diabetic nephropathy in humans in vivo.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet , Kidney Diseases , Obesity , Proton Magnetic Resonance Spectroscopy , Animals , Female , Male , Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Kidney Diseases/diet therapy , Kidney Diseases/metabolism , Kidney Diseases/pathology , Obesity/diet therapy , Obesity/metabolism , Obesity/pathology , Proton Magnetic Resonance Spectroscopy/methods , Random Allocation , Swine , Triglycerides/metabolism
14.
Diabetes Obes Metab ; 19(12): 1810-1813, 2017 12.
Article in English | MEDLINE | ID: mdl-28474364

ABSTRACT

While it is well recognized that obesity is associated with an increased ß-cell mass, the association with α-cell mass is less clear. Type 2 diabetes (T2DM) associated with obesity is a bihormonal disease characterized by inadequate insulin secretion and hyperglucagonaemia. We examined ß- and α-cell mass throughout the pancreas in obese and lean subjects. Pancreatic tissue of the head, body and tail region of the pancreas was examined from 15 obese subjects (body mass index [BMI] ≥ 27 kg/m2 ) and 15 age-matched lean subjects (BMI ≤ 25 kg/m2 ) without diabetes. In obese subjects both ß- and α-cell mass were proportionally higher compared with lean subjects, thereby maintaining the α- to ß-cell ratio. The adaptation to obesity occurred preferentially in the head of the pancreas. As data so far have been derived from histological studies of ß- and α-cell adaptation, in which the head region of the human pancreas was not included, the adaptive capacity of humans to obesity has previously been underestimated. Obesity is associated with an increased α-cell mass, which could contribute to the hyperglucagonaemia observed in people with T2DM.


Subject(s)
Glucagon-Secreting Cells/pathology , Obesity/pathology , Body Mass Index , Cell Count , Cell Proliferation , Cell Size , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Ki-67 Antigen/metabolism , Middle Aged , Obesity/metabolism , Organ Size , Reproducibility of Results , Tissue Donors
15.
J Mater Sci Mater Med ; 28(12): 195, 2017 Nov 18.
Article in English | MEDLINE | ID: mdl-29151130

ABSTRACT

Islets of Langerhans need to maintain their round morphology and to be fast revascularized after transplantation to preserve functional insulin secretion in response to glucose stimulation. For this purpose, a non-cell-adhesive environment is preferable for their embedding. Conversely, nutrient and oxygen supply to islets is guaranteed by capillary ingrowth within the construct and this can only be achieved in a matrix that provides adhesion cues for cells. In this study, two different approaches are explored, which are both based on a layered architecture, in order to combine these two opposite requirements. A non-adhesive islet encapsulation layer is based on polyethyleneglycole diacrylate (PEGDA). This first layer is combined with a second hydrogel based on thiolated-gelatin, thiolated-heparin and thiolated-hyaluronic acid providing cues for endothelial cell adhesion and acting as a growth factor releasing matrix. In an alternative approach, a conformal PEGDA coating is covalently applied on the surface of the islets. The coated islets are subsequently embedded in the previously mentioned hydrogel containing thiolated glycosaminoglycans. The suitability of this approach as a matrix for controlled growth factor release has been demonstrated by studying the controlled release of VEGF and bFGF for 14 days. Preliminary tube formation has been quantified on the growth factor loaded hydrogels. This approach should facilitate blood vessel ingrowth towards the embedded islets and maintain islet round morphology and functionality upon implantation.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate , Islets of Langerhans/physiology , Animals , Cell Culture Techniques , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Mice , Neovascularization, Physiologic , Tissue Scaffolds
16.
J Cell Mol Med ; 19(8): 1836-46, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25782016

ABSTRACT

Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three-dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100-150 µm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose-responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re-associated human islet cells showed an a-typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C-peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell-cell interactions between insuloma and/or primary islet cells.


Subject(s)
Glucose/pharmacology , Islets of Langerhans/cytology , Animals , Cell Aggregation/drug effects , Cell Line, Tumor , Cell Size , Cell Survival , Cells, Cultured , Female , Humans , Insulinoma/pathology , Male , Mice, SCID , Middle Aged , Reproducibility of Results
17.
Mol Ther ; 21(8): 1592-601, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23689598

ABSTRACT

Islet transplantation is a promising therapy for type 1 diabetes, but graft function and survival are compromised by recurrent islet autoimmunity. Immunoprotection of islets will be required to improve clinical outcome. We engineered human ß cells to express herpesvirus-encoded immune-evasion proteins, "immunevasins." The capacity of immunevasins to protect ß cells from autoreactive T-cell killing was evaluated in vitro and in vivo in humanized mice. Lentiviral vectors were used for efficient genetic modification of primary human ß cells without impairing their function. Using a novel ß-cell-specific reporter gene assay, we show that autoreactive cytotoxic CD8(+) T-cell clones isolated from patients with recent onset diabetes selectively destroyed human ß cells, and that coexpression of the human cytomegalovirus-encoded US2 protein and serine proteinase inhibitor 9 offers highly efficient protection in vitro. Moreover, coimplantation of these genetically modified pseudoislets with ß-cell-specific cytotoxic T cells into immunodeficient mice achieves preserved human insulin production and C-peptide secretion. Collectively, our data provide proof of concept that human ß cells can be efficiently genetically modified to provide protection from killing mediated by autoreactive T cells and retain their function in vitro and in vivo.


Subject(s)
Autoimmunity , CD8-Positive T-Lymphocytes/immunology , Islets of Langerhans Transplantation , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Animals , C-Peptide/metabolism , Cytotoxicity, Immunologic , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Gene Expression , Gene Order , Genetic Vectors/genetics , HLA-A2 Antigen/immunology , Humans , Insulin/genetics , Insulin/immunology , Insulin-Secreting Cells/metabolism , Lentivirus/genetics , Male , Mice , Organ Specificity/genetics , Promoter Regions, Genetic , Protein Precursors/immunology , Serpins/genetics , Serpins/immunology , T-Lymphocytes, Cytotoxic , Transduction, Genetic , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
18.
J Biophotonics ; : e202400292, 2024 Oct 13.
Article in English | MEDLINE | ID: mdl-39396823

ABSTRACT

BACKGROUND AND AIMS: Hepatic steatosis (HS), particularly macrovesicular steatosis (MaS), influences transplant outcomes. Accurate assessment of MaS is crucial for graft selection. While traditional assessment methods have limitations, non-invasive spectroscopic techniques like Raman and reflectance spectroscopy offer promise. This study aimed to evaluate the efficacy of a portable ambient light-compatible spectroscopic system in assessing global HS and MaS in human liver specimens. METHODS: A two-stage approach was employed on thawed snap-frozen human liver specimens under ambient room light: biochemical validation involving a comparison of fat content from Raman and reflectance intensities with triglyceride (TG) quantifications and histopathological validation, contrasting Raman-derived fat content with evaluations by an expert pathologist and a "Positive Pixel Count" algorithm. Raman and reflectance intensities were combined to discern significant (≥ 10%) discrepancies in global HS and MaS. RESULTS: The initial set of 16 specimens showed a positive correlation between Raman and reflectance-derived fat content and TG quantifications. The Raman system effectively differentiated minimum-to-severe global and macrovesicular steatosis in the subsequent 66 specimens. A dual-variable prediction algorithm was developed, effectively classifying significant discrepancies (> 10%) between algorithm-estimated global HS and pathologist-estimated MaS. CONCLUSION: Our study established the viability and reliability of a portable spectroscopic system for non-invasive HS and MaS assessment in human liver specimens. The compatibility with ambient light conditions and the ability to address limitations of previous methods marks a significant advancement in this field. By offering promising differentiation between global HS and MaS, our system introduces an innovative approach to real-time and quantitative donor HS assessments. The proposed method holds the promise of refining donor liver assessment during liver recovery and ultimately enhancing transplantation outcomes.

19.
Nat Commun ; 15(1): 3818, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740760

ABSTRACT

The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.


Subject(s)
Kidney , Organ Preservation , Perfusion , Humans , Kidney/metabolism , Organ Preservation/methods , Perfusion/methods , Kidney Transplantation , Male , Organ Preservation Solutions , Female , Middle Aged , Cell-Free System , Citric Acid Cycle , Adult , Nutrients/metabolism , Lipidomics/methods , Aged
20.
Diabetologia ; 56(12): 2651-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24030068

ABSTRACT

AIMS/HYPOTHESIS: Thymic expression of self-antigens during T-lymphocyte development is believed to be crucial for preventing autoimmunity. It has been suggested that G6PC2, the gene encoding islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), is differentially spliced between pancreatic beta cells and the thymus. This may contribute to incomplete elimination of IGRP-specific T lymphocytes in the thymus, predisposing individuals to type 1 diabetes. We tested whether specific splice variation in islets vs thymus correlates with loss of tolerance to IGRP in type 1 diabetes. METHODS: Expression of G6PC2 splice variants was compared among thymus, purified medullary thymic epithelial cells and pancreatic islets by RT-PCR. Differential immunogenicity of IGRP splice variants was tested in patients and healthy individuals for autoantibodies and specific cytotoxic T lymphocytes using radiobinding assays and HLA class I multimers, respectively. RESULTS: Previously reported G6PC2 splice variants, including full-length G6PC2, were confirmed, albeit that they occurred in both pancreas and thymus, rather than islets alone. Yet, their expression levels were profoundly greater in islets than in thymus. Moreover, three novel G6PC2 variants were discovered that occur in islets only, leading to protein truncations, frame shifts and neo-sequences prone to immunogenicity. However, autoantibodies to novel or known IGRP splice variants did not differ between patients and healthy individuals, and similar frequencies of IGRP-specific cytotoxic T lymphocytes could be detected in both patients with type 1 diabetes and healthy individuals. CONCLUSIONS/INTERPRETATION: We propose that post-transcriptional variation of tissue-specific self-proteins may affect negative thymic selection, although this need not necessarily lead to disease.


Subject(s)
Alternative Splicing , Diabetes Mellitus, Type 1/immunology , Glucose-6-Phosphatase/immunology , Islets of Langerhans/immunology , Pancreas/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Antibody Formation/genetics , Antibody Formation/immunology , Autoantigens/immunology , Autoantigens/metabolism , Base Sequence , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/genetics , Female , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , Glucose-6-Phosphatase/genetics , Humans , Islets of Langerhans/metabolism , Male , Pancreas/enzymology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism , Thymus Gland/enzymology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL