Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
Br J Haematol ; 196(3): 589-598, 2022 02.
Article in English | MEDLINE | ID: mdl-34632572

ABSTRACT

Relapsed or refractory diffuse large B-cell lymphoma (DLBCL) cases have a poor outcome. Here we analysed clinico-biological features in 373 DLBCL patients homogeneously treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), in order to identify variables associated with early failure to treatment (EF), defined as primary refractoriness or relapse within 12 months from diagnosis. In addition to clinical features, mutational status of 106 genes was studied by targeted next-generation sequencing in 111 cases, copy number alterations in 87, and gene expression profile (GEP) in 39. Ninety-seven cases (26%) were identified as EF and showed significantly shorter overall survival (OS). Patients with B symptoms, advanced stage, high levels of serum lactate dehydrogenase (LDH) or ß2-microglobulin, low lymphocyte/monocyte ratio and higher Revised International Prognostic Index (R-IPI) scores, as well as those with BCL2 rearrangements more frequently showed EF, with R-IPI being the most important in logistic regression. Mutations in NOTCH2, gains in 5p15·33 (TERT), 12q13 (CDK2), 12q14·1 (CDK4) and 12q15 (MDM2) showed predictive importance for EF independently from R-IPI. GEP studies showed that EF cases were significantly enriched in sets related to cell cycle regulation and inflammatory response, while cases in response showed over-representation of gene sets related to extra-cellular matrix and tumour microenvironment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Genetic Variation , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Biopsy , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , DNA Copy Number Variations , DNA Mutational Analysis , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , In Situ Hybridization, Fluorescence , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/mortality , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Odds Ratio , Prednisone/adverse effects , Prednisone/therapeutic use , Prognosis , Rituximab/adverse effects , Rituximab/therapeutic use , Treatment Failure , Treatment Outcome , Vincristine/adverse effects , Vincristine/therapeutic use
2.
Blood ; 135(4): 274-286, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31738823

ABSTRACT

Pediatric large B-cell lymphomas (LBCLs) share morphological and phenotypic features with adult types but have better prognosis. The higher frequency of some subtypes such as LBCL with IRF4 rearrangement (LBCL-IRF4) in children suggests that some age-related biological differences may exist. To characterize the genetic and molecular heterogeneity of these tumors, we studied 31 diffuse LBCLs (DLBCLs), not otherwise specified (NOS); 20 LBCL-IRF4 cases; and 12 cases of high-grade B-cell lymphoma (HGBCL), NOS in patients ≤25 years using an integrated approach, including targeted gene sequencing, copy-number arrays, and gene expression profiling. Each subgroup displayed different molecular profiles. LBCL-IRF4 had frequent mutations in IRF4 and NF-κB pathway genes (CARD11, CD79B, and MYD88), losses of 17p13 and gains of chromosome 7, 11q12.3-q25, whereas DLBCL, NOS was predominantly of germinal center B-cell (GCB) subtype and carried gene mutations similar to the adult counterpart (eg, SOCS1 and KMT2D), gains of 2p16/REL, and losses of 19p13/CD70. A subset of HGBCL, NOS displayed recurrent alterations of Burkitt lymphoma-related genes such as MYC, ID3, and DDX3X and homozygous deletions of 9p21/CDKN2A, whereas other cases were genetically closer to GCB DLBCL. Factors related to unfavorable outcome were age >18 years; activated B-cell (ABC) DLBCL profile, HGBCL, NOS, high genetic complexity, 1q21-q44 gains, 2p16/REL gains/amplifications, 19p13/CD70 homozygous deletions, and TP53 and MYC mutations. In conclusion, these findings further unravel the molecular heterogeneity of pediatric and young adult LBCL, improve the classification of this group of tumors, and provide new parameters for risk stratification.


Subject(s)
Interferon Regulatory Factors/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Prognosis , Transcriptome , Young Adult
3.
Hematol Oncol ; 40(5): 864-875, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35850118

ABSTRACT

The role of macrophages (Mo) and their prognostic impact in diffuse large B-cell lymphomas (DLBCL) remain controversial. By regulating the lipid metabolism, Liver-X-Receptors (LXRs) control Mo polarization/inflammatory response, and their pharmacological modulation is under clinical investigation to treat human cancers, including lymphomas. Herein, we surveyed the role of LXRs in DLBCL for prognostic purposes. Comparing bulk tumors with purified malignant and normal B-cells, we found an intriguing association of NR1H3, encoding for the LXR-α isoform, with the tumor microenvironment (TME). CIBERSORTx-based purification on large DLBCL datasets revealed a high expression of the receptor transcript in M1-like pro-inflammatory Mo. By determining an expression cut-off of NR1H3, we used digital measurement to validate its prognostic capacity on two large independent on-trial and real-world cohorts. Independently of classical prognosticators, NR1H3high patients displayed longer survival compared with NR1H3low cases and a high-resolution Mo GEP dissection suggested a remarkable transcriptional divergence between subgroups. Overall, our findings indicate NR1H3 as a Mo-related biomarker identifying patients at higher risk and prompt future preclinical studies investigating its mouldability for therapeutic purposes.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Tumor Microenvironment , Liver X Receptors/genetics
4.
Haematologica ; 106(3): 682-691, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32273480

ABSTRACT

Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Reproducibility of Results
5.
Haematologica ; 106(10): 2682-2693, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33951889

ABSTRACT

Plasmablastic lymphoma (PBL) is an aggressive B-cell lymphoma with an immunoblastic/large-cell morphology and terminal B-cell differentiation. The differential diagnosis from Burkitt lymphoma, plasma cell myeloma and some variants of diffuse large B-cell lymphoma may be challenging because of the overlapping morphological, genetic and immunophenotypic features. Furthermore, the genomic landscape in PBL is not well known. To characterize the genetic and molecular heterogeneity of these tumors, we investigated 34 cases of PBL using an integrated approach, including fluorescence in situ hybridization, targeted sequencing of 94 B-cell lymphoma-related genes, and copy-number arrays. PBL were characterized by high genetic complexity including MYC translocations (87%), gains of 1q21.1-q44, trisomy 7, 8q23.2- q24.21, 11p13-p11.2, 11q14.2-q25, 12p and 19p13.3-p13.13, losses of 1p33, 1p31.1-p22.3, 13q and 17p13.3-p11.2, and recurrent mutations of STAT3 (37%), NRAS and TP53 (33%), MYC and EP300 (19%) and CARD11, SOCS1 and TET2 (11%). Pathway enrichment analysis suggested a cooperative action between MYC alterations and MAPK (49%) and JAK-STAT (40%) signaling pathways. Of note, Epstein-Barr virus (EBV)-negative PBL cases had higher mutational and copy-number load and more frequent TP53, CARD11 and MYC mutations, whereas EBV-positive PBL tended to have more mutations affecting the JAK-STAT pathway. In conclusion, these findings further unravel the distinctive molecular heterogeneity of PBL identifying novel molecular targets and the different genetic profile of these tumors in relation to EBV infection.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Plasmablastic Lymphoma , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , In Situ Hybridization, Fluorescence , Lymphoma, Large B-Cell, Diffuse/genetics , Plasmablastic Lymphoma/diagnosis , Plasmablastic Lymphoma/genetics
6.
Nature ; 526(7574): 519-24, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26200345

ABSTRACT

Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , B-Lymphocytes/metabolism , Carrier Proteins/genetics , Chromosomes, Human, Pair 9/genetics , DNA Mutational Analysis , DNA, Neoplasm/genetics , DNA-Binding Proteins , Enhancer Elements, Genetic/genetics , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , PAX5 Transcription Factor/biosynthesis , PAX5 Transcription Factor/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Transcription Factors/genetics
7.
Blood ; 127(17): 2122-30, 2016 04 28.
Article in English | MEDLINE | ID: mdl-26837699

ABSTRACT

Genomic studies have revealed the complex clonal heterogeneity of chronic lymphocytic leukemia (CLL). The acquisition and selection of genomic aberrations may be critical to understanding the progression of this disease. In this study, we have extensively characterized the mutational status of TP53, SF3B1, BIRC3, NOTCH1, and ATM in 406 untreated CLL cases by ultra-deep next-generation sequencing, which detected subclonal mutations down to 0.3% allele frequency. Clonal dynamics were examined in longitudinal samples of 48 CLL patients. We identified a high proportion of subclonal mutations, isolated or associated with clonal aberrations. TP53 mutations were present in 10.6% of patients (6.4% clonal, 4.2% subclonal), ATM mutations in 11.1% (7.8% clonal, 1.3% subclonal, 2% germ line mutations considered pathogenic), SF3B1 mutations in 12.6% (7.4% clonal, 5.2% subclonal), NOTCH1 mutations in 21.8% (14.2% clonal, 7.6% subclonal), and BIRC3 mutations in 4.2% (2% clonal, 2.2% subclonal). ATM mutations, clonal SF3B1, and both clonal and subclonal NOTCH1 mutations predicted for shorter time to first treatment irrespective of the immunoglobulin heavy-chain variable-region gene (IGHV) mutational status. Clonal and subclonal TP53 and clonal NOTCH1 mutations predicted for shorter overall survival together with the IGHV mutational status. Clonal evolution in longitudinal samples mainly occurred in cases with mutations in the initial samples and was observed not only after chemotherapy but also in untreated patients. These findings suggest that the characterization of the subclonal architecture and its dynamics in the evolution of the disease may be relevant for the management of CLL patients.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Genes, p53 , Inhibitor of Apoptosis Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Neoplasm Proteins/genetics , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Receptor, Notch1/genetics , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Aged, 80 and over , Ataxia Telangiectasia Mutated Proteins/physiology , Baculoviral IAP Repeat-Containing 3 Protein , Clone Cells , DNA Mutational Analysis , Disease Progression , Evolution, Molecular , Female , Humans , Inhibitor of Apoptosis Proteins/physiology , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Middle Aged , Mutation , Neoplasm Proteins/physiology , Neoplastic Stem Cells , Phosphoproteins/physiology , Prognosis , RNA Splicing Factors/physiology , Receptor, Notch1/physiology , Time-to-Treatment , Treatment Outcome , Tumor Suppressor Protein p53/physiology , Ubiquitin-Protein Ligases/physiology , Young Adult
8.
Nature ; 475(7354): 101-5, 2011 Jun 05.
Article in English | MEDLINE | ID: mdl-21642962

ABSTRACT

Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.


Subject(s)
Genome, Human/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , Amino Acid Sequence , Animals , Carrier Proteins/genetics , DNA Mutational Analysis , Humans , Karyopherins/genetics , Molecular Sequence Data , Myeloid Differentiation Factor 88/chemistry , Myeloid Differentiation Factor 88/genetics , Receptor, Notch1/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Reproducibility of Results , Exportin 1 Protein
9.
Ann Rheum Dis ; 75(6): 1177-86, 2016 06.
Article in English | MEDLINE | ID: mdl-26698852

ABSTRACT

BACKGROUND: Interferon γ (IFNγ) is considered a seminal cytokine in the pathogenesis of giant cell arteritis (GCA), but its functional role has not been investigated. We explored changes in infiltrating cells and biomarkers elicited by blocking IFNγ with a neutralising monoclonal antibody, A6, in temporal arteries from patients with GCA. METHODS: Temporal arteries from 34 patients with GCA (positive histology) and 21 controls were cultured on 3D matrix (Matrigel) and exposed to A6 or recombinant IFNγ. Changes in gene/protein expression were measured by qRT-PCR/western blot or immunoassay. Changes in infiltrating cells were assessed by immunohistochemistry/immunofluorescence. Chemotaxis/adhesion assays were performed with temporal artery-derived vascular smooth muscle cells (VSMCs) and peripheral blood mononuclear cells (PBMCs). RESULTS: Blocking endogenous IFNγ with A6 abrogated STAT-1 phosphorylation in cultured GCA arteries. Furthermore, selective reduction in CXCL9, CXCL10 and CXCL11 chemokine expression was observed along with reduction in infiltrating CD68 macrophages. Adding IFNγ elicited consistent opposite effects. IFNγ induced CXCL9, CXCL10, CXCL11, CCL2 and intracellular adhesion molecule-1 expression by cultured VSMC, resulting in increased PBMC chemotaxis/adhesion. Spontaneous expression of chemokines was higher in VSMC isolated from GCA-involved arteries than in those obtained from controls. Incubation of IFNγ-treated control arteries with PBMC resulted in adhesion/infiltration by CD68 macrophages, which did not occur in untreated arteries. CONCLUSIONS: Our ex vivo system suggests that IFNγ may play an important role in the recruitment of macrophages in GCA by inducing production of specific chemokines and adhesion molecules. Vascular wall components (ie, VSMC) are mediators of these functions and may facilitate progression of inflammatory infiltrates through the vessel wall.


Subject(s)
Chemokines, CXC/metabolism , Giant Cell Arteritis/immunology , Interferon-gamma/antagonists & inhibitors , Macrophages/immunology , Aged , Aged, 80 and over , Cells, Cultured , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL11/genetics , Chemokine CXCL11/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Chemokines, CXC/genetics , Chemotaxis/immunology , Down-Regulation/immunology , Female , Gene Expression Regulation/drug effects , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/pharmacology , Male , Muscle, Smooth, Vascular/immunology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Temporal Arteries/immunology , Tissue Culture Techniques
10.
Proc Natl Acad Sci U S A ; 110(45): 18250-5, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145436

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.


Subject(s)
Clonal Evolution/genetics , Genetic Variation , Genome, Human/genetics , Lymphoma, Mantle-Cell/genetics , Mutation/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Base Sequence , Cyclin D1/genetics , Genome-Wide Association Study , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Lymphoma, Mantle-Cell/physiopathology , Microarray Analysis , Molecular Sequence Data , Receptor, Notch2/genetics , Toll-Like Receptor 2/genetics
11.
Blood ; 121(12): 2175-85, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23321250

ABSTRACT

Mantle cell lymphoma (MCL) is one of the most aggressive lymphoid neoplasms whose pathogenesis is not fully understood. The neural transcription factor SOX11 is overexpressed in most MCL but is not detected in other mature B-cell lymphomas or normal lymphoid cells. The specific expression of SOX11 in MCL suggests that it may be an important element in the development of this tumor, but its potential function is not known. Here, we show that SOX11 promotes tumor growth in a MCL-xenotransplant mouse model. Using chromatin immunoprecipitation microarray analysis combined with gene expression profiling upon SOX11 knockdown, we identify target genes and transcriptional programs regulated by SOX11 including the block of mature B-cell differentiation, modulation of cell cycle, apoptosis, and stem cell development. PAX5 emerges as one of the major SOX11 direct targets. SOX11 silencing downregulates PAX5, induces BLIMP1 expression, and promotes the shift from a mature B cell into the initial plasmacytic differentiation phenotype in both primary tumor cells and an in vitro model. Our results suggest that SOX11 contributes to tumor development by altering the terminal B-cell differentiation program of MCL and provide perspectives that may have clinical implications in the diagnosis and design of new therapeutic strategies.


Subject(s)
B-Lymphocytes/physiology , Cell Differentiation/genetics , Lymphoma, Mantle-Cell/genetics , PAX5 Transcription Factor/genetics , SOXC Transcription Factors/physiology , Animals , B-Lymphocytes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/physiopathology , Lymphopoiesis/genetics , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasm Invasiveness , PAX5 Transcription Factor/metabolism , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Transplantation, Heterologous
12.
Int J Cancer ; 133(12): 2852-63, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23754783

ABSTRACT

Mantle cell lymphoma (MCL) is a B-cell neoplasm with an aggressive clinical behavior characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. To clarify the potential contribution of altered DNA methylation in the development and/or progression of MCL, we performed genome-wide methylation profiling of a large cohort of primary MCL tumors (n = 132), MCL cell lines (n = 6) and normal lymphoid tissue samples (n = 31), using the Infinium HumanMethylation27 BeadChip. DNA methylation was compared to gene expression, chromosomal alterations and clinicopathological parameters. Primary MCL displayed a heterogeneous methylation pattern dominated by DNA hypomethylation when compared to normal lymphoid samples. A total of 454 hypermethylated and 875 hypomethylated genes were identified as differentially methylated in at least 10% of primary MCL. Annotation analysis of hypermethylated genes recognized WNT pathway inhibitors and several tumor suppressor genes as frequently methylated, and a substantial fraction of these genes (22%) showed a significant downregulation of their transcriptional levels. Furthermore, we identified a subset of tumors with extensive CpG methylation that had an increased proliferation signature, higher number of chromosomal alterations and poor prognosis. Our results suggest that a subset of MCL displays a dysregulation of DNA methylation characterized by the accumulation of CpG hypermethylation highly associated with increased proliferation that may influence the clinical behavior of the tumors.


Subject(s)
CpG Islands , DNA Methylation , Lymphoma, Mantle-Cell/genetics , Cell Line, Tumor , Cell Proliferation , Humans , Lymphoma, Mantle-Cell/pathology , Wnt Signaling Pathway/physiology
13.
Arch Pathol Lab Med ; 147(8): 896-906, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36355424

ABSTRACT

CONTEXT.­: Despite their stromal origin, follicular dendritic cells (FDCs) share many functions with hematopoietic system cells. FDC neoplasms are currently classified by the World Health Organization along with those of a histiocytic nature. However, the molecular alterations driving oncogenesis in FDC sarcomas (FDCSs) are beginning to be unveiled and do not seem to concur with those described in histiocytic neoplasms, namely MAPK pathway activation. OBJECTIVE.­: To identify molecular alterations driving tumorigenesis in FDCS. DESIGN.­: We investigated the role of MYC and TP53 in FDC-derived tumor oncogenesis and assessed comprehensively the status of the MAPK pathway in 16 FDCSs, 6 inflammatory pseudotumor (IPT)-like FDCSs, and 8 IPTs. RESULTS.­: MYC structural alterations (both amplifications and rearrangements) were identified in 5 of 14 FDCSs (35.7%), all associated with MYC overexpression. TP53 mutations were identified in 4 of 14 FDCSs (28.6%), all of which displayed intense and diffuse p53 expression. None of these alterations were identified in any IPT-like FDCSs or in IPT cases. No MAPK pathway gene alterations were identified in any of the cases studied. CONCLUSIONS.­: The presence of MYC and TP53 alterations and the lack of association with Epstein-Barr virus segregate classical FDCS from IPT-like FDCS, pointing at different oncogenic mechanisms in both entities. Our results suggest a possible oncogenic role of MYC and TP53 alterations in FDCS. The absence of MAPK pathway alterations confirms the lack of a significant role of this pathway in the oncogenesis of FDC-derived neoplasms.


Subject(s)
Dendritic Cell Sarcoma, Follicular , Epstein-Barr Virus Infections , Sarcoma , Humans , Carcinogenesis/genetics , Dendritic Cell Sarcoma, Follicular/genetics , Dendritic Cell Sarcoma, Follicular/pathology , Herpesvirus 4, Human/genetics , Mutation , Tumor Suppressor Protein p53/genetics
14.
Am J Surg Pathol ; 47(2): 202-211, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36221796

ABSTRACT

Intravascular large B-cell lymphoma (IVLBCL) is an uncommon lymphoma with an aggressive clinical course characterized by selective growth of tumor cells within the vessels. Its pathogenesis is still uncertain and there is little information on the underlying genomic alterations. In this study, we performed a clinicopathologic and next-generation sequencing analysis of 15 cases of IVLBCL using a custom panel for the detection of alterations in 68 recurrently mutated genes in B-cell lymphomagenesis. Six patients had evidence of hemophagocytic syndrome. Four patients presented concomitantly a solid malignancy. Tumor cells outside the vessels were observed in 7 cases, 2 with an overt diffuse large B-cell cell lymphoma. In 4 samples, tumor cells infiltrated lymphatic vessel in addition to blood capillaries. Programmed death-ligand 1 (PD-L1) was positive in tumor cells in 4 of 11 evaluable samples and in macrophages intermingled with tumor cells in 8. PD-L1 copy number gains were identified in a higher proportion of cases expressing PD-L1 than in negative tumors. The most frequently mutated gene was PIM1 (9/15, 60%), followed by MYD88L265P and CD79B (8/15, 53% each). In 6 cases, MYD88L265P and CD79B mutations were detected concomitantly. We also identified recurrent mutations in IRF4 , TMEM30A , BTG2 , and ETV6 loci (4/15, 27% each) and novel driver mutations in NOTCH2 , CCND3 , and GNA13 , and an IRF4 translocation in 1 case each. The mutational profile was similar in patients with and without evidence of hemophagocytic syndrome and in cases with or without dissemination of tumor cells outside the vessels. Our results confirm the relevance of mutations in B-cell receptor/nuclear factor-κB signaling and immune escape pathways in IVLBCL and identify novel driver alterations. The similar mutational profile in tumors with extravascular dissemination suggests that these cases may also be considered in the spectrum of IVLBCL.


Subject(s)
Immune Checkpoint Proteins , Lymphohistiocytosis, Hemophagocytic , Lymphoma, Large B-Cell, Diffuse , NF-kappa B , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Genomics , Immediate-Early Proteins/genetics , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Tumor Suppressor Proteins/genetics , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism
15.
Blood Adv ; 7(14): 3695-3709, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36995085

ABSTRACT

The genetic mechanisms associated with splenic marginal zone lymphoma (SMZL) transformation are not well defined. We studied 41 patients with SMZL that eventually underwent large B-cell lymphoma transformation. Tumor material was obtained either only at diagnosis (9 patients), at diagnosis and transformation (18 patients), and only at transformation (14 patients). Samples were categorized in 2 groups: (1) at diagnosis (SMZL, n = 27 samples), and (2) at transformation (SMZL-T, n = 32 samples). Using copy number arrays and a next-generation sequencing custom panel, we identified that the main genomic alterations in SMZL-T involved TNFAIP3, KMT2D, TP53, ARID1A, KLF2, 1q gains, and losses of 9p21.3 (CDKN2A/B) and 7q31-q32. Compared with SMZL, SMZL-T had higher genomic complexity, and higher incidence of TNFAIP3 and TP53 alterations, 9p21.3 (CDKN2A/B) losses, and 6p gains. SMZL and SMZL-T clones arose by divergent evolution from a common altered precursor cell that acquired different genetic alterations in virtually all evaluable cases (92%, 12 of 13 cases). Using whole-genome sequencing of diagnostic and transformation samples in 1 patient, we observed that the SMZL-T sample carried more genomic aberrations than the diagnostic sample, identified a translocation t(14;19)(q32;q13) present in both samples, and detected a focal B2M deletion due to chromothripsis acquired at transformation. Survival analysis showed that KLF2 mutations, complex karyotype, and International Prognostic Index score at transformation were predictive of a shorter survival from transformation (P = .001; P = .042; and P = .007; respectively). In summary, SMZL-T are characterized by higher genomic complexity than SMZL, and characteristic genomic alterations that could represent key players in the transformation event.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Splenic Neoplasms , Humans , Splenic Neoplasms/genetics , Splenic Neoplasms/diagnosis , Splenic Neoplasms/pathology , Mutation , Translocation, Genetic , Lymphoma, Large B-Cell, Diffuse/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics
16.
Hepatology ; 54(6): 2104-13, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21837749

ABSTRACT

UNLABELLED: Low bone formation is considered to be the main feature in osteoporosis associated with cholestatic and end-stage liver diseases, although the consequences of retained substances in chronic cholestasis on bone cells have scarcely been studied. Therefore, we analyzed the effects of bilirubin and serum from jaundiced patients on viability, differentiation, mineralization, and gene expression in the cells involved in bone formation. The experiments were performed in human primary osteoblasts and SAOS-2 human osteosarcoma cells. Unconjugated bilirubin or serum from jaundiced patients resulted in a dose-dependent decrease in osteoblast viability. Concentrations of bilirubin or jaundiced serum without effects on cell survival significantly diminished osteoblast differentiation. Mineralization was significantly reduced by exposure to 50 µM bilirubin at all time points (from -32% to -55%) and jaundiced sera resulted in a significant decrease on cell mineralization as well. Furthermore, bilirubin down-regulated RUNX2 (runt-related transcription factor 2) gene expression, a basic osteogenic factor involved in osteoblast differentiation, and serum from jaundiced patients significantly up-regulated the RANKL/OPG (receptor activator of nuclear factor-κB ligand/osteoprotegerin) gene expression ratio, a system closely involved in osteoblast-induced osteoclastogenesis. CONCLUSION: Besides decreased cell viability, unconjugated bilirubin and serum from jaundiced patients led to defective consequences on osteoblasts. Moreover, jaundiced serum up-regulates the system involved in osteoblast-induced osteoclastogenesis. These results support the deleterious consequences of increased bilirubin in advanced chronic cholestasis and in end-stage liver diseases, resulting in disturbed bone formation related to osteoblast dysfunction.


Subject(s)
Bilirubin/pharmacology , Jaundice/blood , Osteoblasts/drug effects , Osteoporosis/etiology , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Core Binding Factor Alpha 1 Subunit/biosynthesis , Down-Regulation , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteosarcoma/physiopathology , RANK Ligand/biosynthesis , Up-Regulation
17.
Rheumatology (Oxford) ; 51(5): 841-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22258388

ABSTRACT

OBJECTIVE: Frequent genetic variants may be associated with GCA. Existing studies have analysed a limited number of candidate genes and genetic variants. To expand this information, we performed a case-control study genotyping 130 single nucleotide polymorphisms (SNPs) in 82 biopsy-proven GCA patients and 166 healthy controls from the Spanish population. METHODS: SNPs in coding and regulatory gene regions of 14 candidate genes (CCL2, CCR7, IL10, IL12A, IL1A, IL1B, IL1RN, IL6, IL8, INFG, LTA, NOS2, TNF and VEGF) were explored using the Illumina Bead Array System. Multivariate methods based on logistic regression were used for statistical analysis. RESULTS: Nine SNPs located in five genes had significant association with GCA risk (P < 0.05). These SNPs were located in the NOS2 (rs2779251), VEGF (rs1885657, rs2010963, rs699946 and rs699947), IL1RN (rs17207494), IL6 (rs7805828 and rs1546766) and CCL2 (rs1860190) genes. The strongest associations were seen for rs2779251, rs1885657 and rs2010963 (P = 2.3 × 10(-5), P = 0.0078 and P = 0.0097, respectively). The presence of the minor allele of NOS2 variant rs2779251 had a protective effect on the risk for GCA [odds ratio (OR) = 0.27, 95% CI 0.14, 0.52]. Risk alleles for three of the four SNPs in the VEGF gene (rs2010963, rs699946 and rs699947) were associated in homozygosis with increased risk (OR = 4.22, 95% CI 1.38, 12.87; OR = 9.04, 95% CI 1.58, 51.81; and OR = 2.38, 95% CI 1.05, 5.38, respectively), whereas a minor allele for the other SNP (rs1885657) had a protective effect (OR = 0.46, 95% CI 0.26, 0.84). CONCLUSION: Common genetic variants in NOS2, VEGF, IL6, ILRN1 and CCL2 genes are associated with GCA, indicating a polygenic influence on disease susceptibility.


Subject(s)
Chemokine CCL2/genetics , Giant Cell Arteritis/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-6/genetics , Nitric Oxide Synthase Type II/genetics , Polymorphism, Single Nucleotide , Vascular Endothelial Growth Factor A/genetics , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Male , Middle Aged
18.
Genes Chromosomes Cancer ; 50(11): 887-95, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21910157

ABSTRACT

Chronic lymphocytic leukemia (CLL) cells are characterized by several chromosomal lesions. Some of these aberrations imply chromosome breaks as a result of unrepaired double strand breaks (DSBs) in the DNA. The ATM (ataxia telangiectasia-mutated) protein is the principal integrator of cellular responses to DSBs. ATM deletion is also an adverse prognostic factor in CLL. Taking this into account, we evaluated if genetic and/or epigenetic variation in the ATM gene may modulate the individual susceptibility to develop CLL. Our case-control association study was performed in a large Spanish population of 1,503 individuals, including 742 patients with CLL and 761 controls. We identified one haplotype within the ATM gene that confers an increased risk of CLL development (OR = 1.33; 95% CI: 1.10-1.60). Two polymorphisms of this ATM haplotype eliminated one CpG site each in Introns 15 and 61, causing changes in DNA methylation pattern. These data provide the first evidence for the existence of a putative "hepitype" in the ATM gene associated with CLL risk.


Subject(s)
Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics , Aged , Ataxia Telangiectasia Mutated Proteins , Case-Control Studies , Cell Cycle Proteins/metabolism , Computer Simulation , DNA Methylation , DNA-Binding Proteins/metabolism , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Risk Factors , Tumor Suppressor Proteins/metabolism
19.
Diagnostics (Basel) ; 12(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35885481

ABSTRACT

High-throughput sequencing of cell-free DNA (cfDNA) has emerged as a promising noninvasive approach in lymphomas, being particularly useful when a biopsy specimen is not available for molecular analysis, as it frequently occurs in primary mediastinal large B-cell lymphoma (PMBL). We used cfDNA for genomic characterization in 20 PMBL patients by means of a custom NGS panel for gene mutations and low-pass whole-genome sequencing (WGS) for copy number analysis (CNA) in a real-life setting. Appropriate cfDNA to perform the analyses was obtained in 18/20 cases. The sensitivity of cfDNA to detect the mutations present in paired FFPE samples was 69% (95% CI: 60-78%). The mutational landscape found in cfDNA samples was highly consistent with that of the tissue, with the most frequently mutated genes being B2M (61%), SOCS1 (61%), GNA13 (44%), STAT6 (44%), NFKBIA (39%), ITPKB (33%), and NFKBIE (33%). Overall, we observed a 75% concordance to detect CNA gains/losses between DNA microarray and low-pass WGS. The sensitivity of low-pass WGS was remarkably higher for clonal CNA (18/20, 90%) compared to subclonal alterations identified by DNA microarray. No significant associations between cfDNA amount and tumor burden or outcome were found. cfDNA is an excellent alternative source for the accurate genetic characterization of PMBL cases.

20.
Nat Med ; 28(8): 1662-1671, 2022 08.
Article in English | MEDLINE | ID: mdl-35953718

ABSTRACT

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high-B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Cell Transformation, Neoplastic/genetics , Disease Progression , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology
SELECTION OF CITATIONS
SEARCH DETAIL