Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Metabolites ; 13(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37755306

ABSTRACT

Changes in the maternal metabolome, and specifically the maternal lipidome, that occur during pregnancy are relatively unknown. The objective of this investigation was to evaluate the effects of pregnancy on sphingolipid levels using metabolomics analysis followed by confirmational, targeted quantitative analysis. We focused on three subclasses of sphingolipids: ceramides, sphingomyelins, and sphingosines. Forty-seven pregnant women aged 18 to 50 years old participated in this study. Blood samples were collected on two study days for metabolomics analysis. The pregnancy samples were collected between 25 and 28 weeks of gestation and the postpartum study day samples were collected ≥3 months postpartum. Each participant served as their own control. These samples were analyzed using a Ultra-performance liquid chromatography/mass spectroscopy/mass spectroscopy (UPLC/MS/MS) assay that yielded semi-quantitative peak area values that were used to compare sphingolipid levels between pregnancy and postpartum. Following this lipidomic analysis, quantitative LC/MS/MS targeted/confirmatory analysis was performed on the same study samples. In the metabolomic analysis, 43 sphingolipid metabolites were identified and their levels were assessed using relative peak area values. These profiled sphingolipids fell into three categories: ceramides, sphingomyelins, and sphingosines. Of the 43 analytes measured, 35 were significantly different during pregnancy (p < 0.05) (including seven ceramides, 26 sphingomyelins, and two sphingosines) and 32 were significantly higher during pregnancy compared to postpartum. Following metabolomics, a separate quantitative analysis was performed and yielded quantified concentration values for 23 different sphingolipids, four of which were also detected in the metabolomics study. Quantitative analysis supported the metabolomics results with 17 of the 23 analytes measured found to be significantly different during pregnancy including 11 ceramides, four sphingomyelins, and two sphingosines. Fourteen of these were significantly higher during pregnancy. Our data suggest an overall increase in plasma sphingolipid concentrations with possible implications in endothelial function, gestational diabetes mellitus (GDM), intrahepatic cholestasis of pregnancy, and fetal development. This study provides evidence for alterations in maternal sphingolipid metabolism during pregnancy.

2.
Metabolites ; 13(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36837861

ABSTRACT

Limited data are available on the effects of pregnancy on the maternal metabolome. Therefore, the objective of this study was to use metabolomics analysis to determine pathways impacted by pregnancy followed by targeted confirmatory analysis to provide more powerful conclusions about metabolic alterations during pregnancy. Forty-seven pregnant women, 18-50 years of age were included in this study, with each subject serving as their own control. Plasma samples were collected between 25 and 28 weeks gestation and again ≥3 months postpartum for metabolomics analysis utilizing an HILIC/UHPLC/MS/MS assay with confirmatory targeted specific concentration analysis for 10 of the significantly altered amino acids utilizing an LC/MS assay. Principle component analysis (PCA) on metabolomics data clearly separated pregnant and postpartum groups and identified outliers in a preliminary assessment. Of the 980 metabolites recorded, 706 were determined to be significantly different between pregnancy and postpartum. Pathway analysis revealed three significantly impacted pathways, arginine biosynthesis (p = 2 × 10-5 and FDR = 1 × 10-3), valine, leucine, and isoleucine metabolism (p = 2 × 10-5 and FDR = 2 × 10-3), and xanthine metabolism (p = 4 × 10-5 and FDR = 4 × 10-3). Of these we focused analysis on arginine biosynthesis and branched-chain amino acid (BCAA) metabolism due to their clinical importance and interconnected roles in amino acid metabolism. In the confirmational analysis, 7 of 10 metabolites were confirmed as significant and all 10 confirmed the direction of change of concentrations observed in the metabolomics analysis. The data support an alteration in urea nitrogen disposition and amino acid metabolism during pregnancy. These changes could also impact endogenous nitric oxide production and contribute to diseases of pregnancy. This study provides evidence for changes in both the ammonia-urea nitrogen and the BCAA metabolism taking place during pregnancy.

SELECTION OF CITATIONS
SEARCH DETAIL