Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Development ; 146(5)2019 03 07.
Article in English | MEDLINE | ID: mdl-30846463

ABSTRACT

Kidney organoids have potential uses in disease modelling, drug screening and regenerative medicine. However, novel cost-effective techniques are needed to enable scaled-up production of kidney cell types in vitro We describe here a modified suspension culture method for the generation of kidney micro-organoids from human pluripotent stem cells. Optimisation of differentiation conditions allowed the formation of micro-organoids, each containing six to ten nephrons that were surrounded by endothelial and stromal populations. Single cell transcriptional profiling confirmed the presence and transcriptional equivalence of all anticipated renal cell types consistent with a previous organoid culture method. This suspension culture micro-organoid methodology resulted in a three- to fourfold increase in final cell yield compared with static culture, thereby representing an economical approach to the production of kidney cells for various biological applications.


Subject(s)
Cell Culture Techniques , Gene Expression Regulation, Developmental , Kidney/cytology , Pluripotent Stem Cells/cytology , Albumins/metabolism , Cell Differentiation , Cells, Cultured , Doxorubicin/pharmacology , Humans , Nephrons/metabolism , Organoids , Signal Transduction , Transcription, Genetic , Wnt Proteins/metabolism
2.
Nat Methods ; 16(1): 79-87, 2019 01.
Article in English | MEDLINE | ID: mdl-30573816

ABSTRACT

The utility of human pluripotent stem cell-derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcriptional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative maturation as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics.


Subject(s)
Kidney/metabolism , Organoids/metabolism , Cell Differentiation/genetics , Clone Cells , Epithelial Cells/cytology , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kidney/cytology , Kidney Diseases/genetics , Kidney Diseases/pathology , Models, Biological , Organoids/cytology , Reproducibility of Results , Single-Cell Analysis , Transcription, Genetic
3.
Nature ; 526(7574): 564-8, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26444236

ABSTRACT

The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.


Subject(s)
Cell Lineage , Induced Pluripotent Stem Cells/cytology , Models, Biological , Nephrons/cytology , Nephrons/embryology , Organogenesis , Organoids/cytology , Animals , Coculture Techniques , Feeder Cells , Fetus/anatomy & histology , Fetus/cytology , Fetus/embryology , Fibroblasts/cytology , Humans , Kidney Tubules, Collecting/cytology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/embryology , Kidney Tubules, Proximal/physiology , Mesoderm/cytology , Mice , Nephrons/anatomy & histology , Nephrons/physiology , Organoids/embryology , Tissue Culture Techniques
4.
Kidney Int ; 95(5): 1153-1166, 2019 05.
Article in English | MEDLINE | ID: mdl-30827514

ABSTRACT

All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.


Subject(s)
Cellular Reprogramming/genetics , DNA Transposable Elements/genetics , Genetic Engineering/methods , Nephrons/physiology , Regeneration/genetics , Cells, Cultured , Gene Transfer Techniques , Homeodomain Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Primary Cell Culture , Protein Tyrosine Phosphatases/genetics , Snail Family Transcription Factors/genetics
6.
Nat Commun ; 9(1): 5167, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514835

ABSTRACT

The podocytes within the glomeruli of the kidney maintain the filtration barrier by forming interdigitating foot processes with intervening slit diaphragms, disruption in which results in proteinuria. Studies into human podocytopathies to date have employed primary or immortalised podocyte cell lines cultured in 2D. Here we compare 3D human glomeruli sieved from induced pluripotent stem cell-derived kidney organoids with conditionally immortalised human podocyte cell lines, revealing improved podocyte-specific gene expression, maintenance in vitro of polarised protein localisation and an improved glomerular basement membrane matrisome compared to 2D cultures. Organoid-derived glomeruli retain marker expression in culture for 96 h, proving amenable to toxicity screening. In addition, 3D organoid glomeruli from a congenital nephrotic syndrome patient with compound heterozygous NPHS1 mutations reveal reduced protein levels of both NEPHRIN and PODOCIN. Hence, human iPSC-derived organoid glomeruli represent an accessible approach to the in vitro modelling of human podocytopathies and screening for podocyte toxicity.


Subject(s)
Drug Evaluation, Preclinical , Kidney Glomerulus/cytology , Organoids/cytology , Podocytes/cytology , Cell Culture Techniques/methods , Cell Line , Cells, Cultured , Collagen/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Insulin/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kidney , Laminin/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nephrotic Syndrome/pathology , Organoids/drug effects , Podocytes/drug effects , Sequence Analysis , Sequence Analysis, RNA , Stem Cells
7.
Nat Protoc ; 11(9): 1681-92, 2016 09.
Article in English | MEDLINE | ID: mdl-27560173

ABSTRACT

The human kidney develops from four progenitor populations-nephron progenitors, ureteric epithelial progenitors, renal interstitial progenitors and endothelial progenitors-resulting in the formation of maximally 2 million nephrons. Until recently, the reported methods differentiated human pluripotent stem cells (hPSCs) into either nephron progenitor or ureteric epithelial progenitor cells, consequently forming only nephrons or collecting ducts, respectively. Here we detail a protocol that simultaneously induces all four progenitors to generate kidney organoids within which segmented nephrons are connected to collecting ducts and surrounded by renal interstitial cells and an endothelial network. As evidence of functional maturity, proximal tubules within organoids display megalin-mediated and cubilin-mediated endocytosis, and they respond to a nephrotoxicant to undergo apoptosis. This protocol consists of 7 d of monolayer culture for intermediate mesoderm induction, followed by 18 d of 3D culture to facilitate self-organizing renogenic events leading to organoid formation. Personnel experienced in culturing hPSCs are required to conduct this protocol.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/cytology , Kidney/cytology , Organoids/cytology , Cell Differentiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL