Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33508229

ABSTRACT

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Subject(s)
Cranial Sinuses/immunology , Cranial Sinuses/physiology , Dura Mater/immunology , Dura Mater/physiology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigens/cerebrospinal fluid , Cellular Senescence , Chemokine CXCL12/pharmacology , Dura Mater/blood supply , Female , Homeostasis , Humans , Immunity , Male , Mice, Inbred C57BL , Phenotype , Stromal Cells/cytology , T-Lymphocytes/cytology
2.
Mol Cell Proteomics ; 23(2): 100716, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219859

ABSTRACT

Previous work has shown that inhibition of abundant myeloid azurophil granule-associated serine proteases (ELANE [neutrophil elastase], PRTN3 [protease 3], and CTSG [Cathepsin G]) is required to stabilize some proteins in myeloid cells. We therefore hypothesized that effective inhibition of these proteases may be necessary for quantitative proteomic analysis of samples containing myeloid cells. To test this hypothesis, we thawed viably preserved acute myeloid leukemia cells from cryovials in the presence or the absence of diisopropyl fluorophosphate (DFP), a cell-permeable and irreversible serine protease inhibitor. Global proteomic analysis was performed, using label-free and isobaric peptide-labeling quantitation. The presence of DFP resulted in an increase of tryptic peptides (14-57%) and proteins (9-31%). In the absence of DFP, 11 to 31% of peptide intensity came from nontryptic peptides; 52 to 75% had cleavage specificity consistent with activities of ELANE-PRTN3. Treatment with DFP reduced the intensity of nontryptic peptides to 4-8% of the total. ELANE inhibition was 95%, based on diisopropyl phosphate modification of active site serine residue. Overall, the relative abundance of 20% of proteins was significantly altered by DFP treatment. These results suggest that active myeloid serine proteases, released during sample processing, can skew quantitative proteomic measurements. Finally, significant ELANE activity was also detected in Clinical Proteomics Tumor Analysis Consortium datasets of solid tumors (many of which have known myeloid infiltration). In the pancreatic cancer dataset, the median percentage of nontryptic intensity detected across patient samples was 34%, with many patient samples having more than half of their detected peptide intensity from nontryptic cleavage events consistent with ELANE-PRTN3 cleavage specificity. Our study suggests that in vitro cleavage of proteins by myeloid serine proteases may be relevant for proteomic studies of any tumor that contains infiltrating myeloid cells.


Subject(s)
Leukemia, Myeloid, Acute , Proteome , Humans , Proteomics , Endopeptidases/metabolism , Serine Proteases , Peptides/chemistry
3.
Mol Cell Proteomics ; 22(11): 100649, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730182

ABSTRACT

Metastatic uveal melanoma (UM) patients typically survive only 2 to 3 years because effective therapy does not yet exist. Here, to facilitate the discovery of therapeutic targets in UM, we have identified protein kinase signaling mechanisms elicited by the drivers in 90% of UM tumors: mutant constitutively active G protein α-subunits encoded by GNAQ (Gq) or GNA11 (G11). We used the highly specific Gq/11 inhibitor FR900359 (FR) to elucidate signaling networks that drive proliferation, metabolic reprogramming, and dedifferentiation of UM cells. We determined the effects of FR on the proteome and phosphoproteome of UM cells as indicated by bioinformatic analyses with CausalPath and site-specific gene set enrichment analysis. We found that inhibition of oncogenic Gq/11 caused deactivation of PKC, Erk, and the cyclin-dependent kinases CDK1 and CDK2 that drive proliferation. Inhibition of oncogenic Gq/11 in UM cells with low metastatic risk relieved inhibitory phosphorylation of polycomb-repressive complex subunits that regulate melanocytic redifferentiation. Site-specific gene set enrichment analysis, unsupervised analysis, and functional studies indicated that mTORC1 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 drive metabolic reprogramming in UM cells. Together, these results identified protein kinase signaling networks driven by oncogenic Gq/11 that regulate critical aspects of UM cell biology and provide targets for therapeutic investigation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , Uveal Neoplasms , Humans , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/pharmacology , Cell Proliferation , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Protein Kinase C/metabolism , Computational Biology , Mutation
4.
Mol Cell Proteomics ; 22(1): 100476, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470535

ABSTRACT

Cancer-derived extracellular vesicles (EVs) promote tumorigenesis, premetastatic niche formation, and metastasis via their protein cargo. However, the proteins packaged by patient tumors into EVs cannot be determined in vivo because of the presence of EVs derived from other tissues. We therefore developed a cross-species proteomic method to quantify the human tumor-derived proteome of plasma EVs produced by patient-derived xenografts of four cancer types. Proteomic profiling revealed individualized packaging of novel protein cargo, and machine learning accurately classified the type of the underlying tumor.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Proteomics , Extracellular Vesicles/metabolism , Neoplasms/metabolism , Cell Communication , Proteome/metabolism
5.
Mol Cell Proteomics ; 22(1): 100454, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36435333

ABSTRACT

Onchocerca volvulus, the causative agent of onchocerciasis, infects over 20 million people and can cause severe dermatitis and ocular conditions including blindness. Current treatments employed in mass drug administration programs do not kill adult female worms, and common diagnostic tests cannot reliably assess viability of adult worms. There is an urgent need for better diagnostic tests to facilitate monitoring the efficacy of new treatments and disease elimination efforts. Here, eight plasma samples collected from individuals infected with O. volvulus and seven from uninfected individuals were analyzed by MS/MS spectrometry to directly identify O. volvulus proteins present in infected but absent in uninfected control samples. This direct proteomic approach for biomarker discovery had not been previously employed for onchocerciasis. Among all detected proteins, 19 biomarker candidates were supported by two or more unique peptides, identified in the plasma of at least three O. volvulus-infected human samples and absent in all control samples. Comprehensive analysis and ranking of these candidates included detailed functional annotation and a review of RNA-seq gene expression profiles. Isotope-labeled standard peptides were run in parallel and validated MS/MS peptide identifications for 15 peptides from 11 of the 19 proteins, and two infected urine and one uninfected urine sample was used for additional validation. A major antigen/OVOC11613 was identified as the most promising candidate with eight unique peptides across five plasma samples and one urine sample. Additional strong candidates included OVOC1523/ATP synthase, OVOC247/laminin and OVOC11626/PLK5, and along with OVOC11613, and were also detected in urine samples from onchocerciasis patients. This study has identified a promising novel set of proteins that will be carried forward to develop assays that can be used for diagnosis of O. volvulus infections and for monitoring treatment efficacy.


Subject(s)
Intestinal Volvulus , Onchocerciasis , Humans , Biomarkers , Onchocerciasis/diagnosis , Proteomics , Tandem Mass Spectrometry
6.
Blood ; 140(13): 1533-1548, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35895896

ABSTRACT

We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Karyopherins/genetics , Ketoglutaric Acids , Leukemia, Myeloid, Acute/pathology , Membrane Proteins/genetics , Mutation , Nuclear Proteins/genetics , Nucleophosmin , Proteome/metabolism , Proteomics , RNA, Messenger , Serine/genetics , fms-Like Tyrosine Kinase 3/genetics , src-Family Kinases/metabolism
7.
Mol Cell Proteomics ; 15(1): 45-56, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26503891

ABSTRACT

Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the "peptide-to-protein" inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0-30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0-30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially when genomic data are available.


Subject(s)
Breast Neoplasms/metabolism , Heterografts/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Breast Neoplasms/genetics , Chromatography, High Pressure Liquid , Female , Genotype , Humans , Mice , Molecular Weight , Peptides/genetics , Peptides/metabolism , Polymorphism, Single Nucleotide , Proteome/chemistry , Proteome/genetics , Tandem Mass Spectrometry , Transplantation, Heterologous
8.
Mol Cell Proteomics ; 15(3): 1060-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26631509

ABSTRACT

Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis.


Subject(s)
Alternative Splicing , Mammary Neoplasms, Experimental/genetics , Mutation , Proteomics/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Animals , Computational Biology/methods , Databases, Genetic , Female , Genome , Humans , Mammary Neoplasms, Experimental/metabolism , Mice , Polymorphism, Single Nucleotide , Tandem Mass Spectrometry , Transcriptome
9.
J Proteome Res ; 16(12): 4523-4530, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29124938

ABSTRACT

Clinical proteomics requires large-scale analysis of human specimens to achieve statistical significance. We evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomics strategy using one channel for reference across all samples in different iTRAQ sets. A total of 148 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating six 2D LC-MS/MS data sets for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assess the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we derived a quantification confidence score based on the quality of each peptide-spectrum match to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS data sets collected over a 7-month period. This study provides the first quality assessment on long-term stability and technical considerations for study design of a large-scale clinical proteomics project.


Subject(s)
Breast Neoplasms/pathology , Proteomics/methods , Animals , Breast Neoplasms/chemistry , Chromatography, Liquid , Heterografts , Humans , Mice , Neoplasm Proteins/analysis , Proteome/analysis , Quality Assurance, Health Care , Tandem Mass Spectrometry
10.
Mol Cell Proteomics ; 14(12): 3224-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26472727

ABSTRACT

Improved diagnostic methods are needed to support ongoing efforts to eliminate onchocerciasis (river blindness). This study used an integrated approach to identify adult female Onchocerca volvulus antigens that can be explored for developing serodiagnostic tests. The first step was to develop a detailed multi-omics database of all O. volvulus proteins deduced from the genome, gene transcription data for different stages of the parasite including eight individual female worms (providing gene expression information for 94.8% of all protein coding genes), and the adult female worm proteome (detecting 2126 proteins). Next, female worm proteins were purified with IgG antibodies from onchocerciasis patients and identified using LC-MS with a high-resolution hybrid quadrupole-time-of-flight mass spectrometer. A total of 241 immunoreactive proteins were identified among those bound by IgG from infected individuals but not IgG from uninfected controls. These included most of the major diagnostic antigens described over the past 25 years plus many new candidates. Proteins of interest were prioritized for further study based on a lack of conservation with orthologs in the human host and other helminthes, their expression pattern across the life cycle, and their consistent expression among individual female worms. Based on these criteria, we selected 33 proteins that should be carried forward for testing as serodiagnostic antigens to supplement existing diagnostic tools. These candidates, together with the extensive pan-omics dataset generated in this study are available to the community (http://nematode.net) to facilitate basic and translational research on onchocerciasis.


Subject(s)
Antigens, Helminth/isolation & purification , Genomics/methods , Immunoglobulin G/metabolism , Onchocerca volvulus/immunology , Onchocerciasis/diagnosis , Animals , Antigens, Helminth/genetics , Antigens, Helminth/metabolism , Databases, Genetic , Early Diagnosis , Female , Gene Expression Regulation, Developmental , Humans , Onchocerca volvulus/genetics , Onchocerciasis/immunology , Serologic Tests
11.
Mol Cell Proteomics ; 13(7): 1690-704, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24719451

ABSTRACT

Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.


Subject(s)
Breast Neoplasms/metabolism , Cold Ischemia , Ovarian Neoplasms/metabolism , Proteome/metabolism , Animals , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred NOD , Neoplasm Transplantation , Phosphoproteins/metabolism , Phosphorylation , Proteomics , Transplantation, Heterologous
12.
Blood ; 121(9): 1633-43, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23297133

ABSTRACT

Acute myeloid leukemia (AML) is characterized by dysregulated gene expression and abnormal patterns of DNA methylation; the relationship between these events is unclear. Many AML patients are now being treated with hypomethylating agents, such as decitabine (DAC), although the mechanisms by which it induces remissions remain unknown. The goal of this study was to use a novel stromal coculture assay that can expand primary AML cells to identify the immediate changes induced by DAC with a dose (100nM) that decreases total 5-methylcytosine content and reactivates imprinted genes (without causing myeloid differentiation, which would confound downstream genomic analyses). Using array-based technologies, we found that DAC treatment caused global hypomethylation in all samples (with a preference for regions with higher levels of baseline methylation), yet there was limited correlation between changes in methylation and gene expression. Moreover, the patterns of methylation and gene expression across the samples were primarily determined by the intrinsic properties of the primary cells, rather than DAC treatment. Although DAC induces hypomethylation, we could not identify canonical target genes that are altered by DAC in primary AML cells, suggesting that the mechanism of action of DAC is more complex than previously recognized.


Subject(s)
Azacitidine/analogs & derivatives , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/genetics , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacology , Azacitidine/administration & dosage , Azacitidine/pharmacology , Cells, Cultured , CpG Islands/drug effects , CpG Islands/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Decitabine , Dose-Response Relationship, Drug , Gene Expression Profiling , Genome, Human/drug effects , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Microarray Analysis , Primary Cell Culture , Time Factors
13.
Clin Cancer Res ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848040

ABSTRACT

PURPOSE: Somatic missense mutations in the phosphodegron domain of the MYC gene (MYC Box I or MBI) are detected in the dominant clones of a subset of acute myeloid leukemia (AML) patients, but the mechanisms by which they contribute to AML are unknown. EXPERIMENTAL DESIGN: To investigate the effects of MBI MYC mutations on hematopoietic cells, we employed a multi-omic approach to systematically compare the cellular and molecular consequences of expressing oncogenic doses of wild type, threonine-58 and proline-59 mutant MYC proteins in hematopoietic cells, and we developed a knockin mouse harboring the germline MBI mutation p.T58N in the Myc< gene. RESULTS: Both wild type and MBI mutant MYC proteins promote self-renewal programs and expand highly selected subpopulations of progenitor cells in the bone marrow. Compared to their wild type counterparts, mutant cells display decreased cell death and accelerated leukemogenesis in vivo, changes that are recapitulated in the transcriptomes of human AML bearing MYC mutations. The mutant phenotypes feature decreased stability and translation of mRNAs encoding proapoptotic and immune-regulatory genes, increased translation of RNA binding proteins and nuclear export machinery, and distinct nucleocytoplasmic RNAs profiles. MBI MYC mutant proteins also show a higher propensity to aggregate in perinuclear regions and the cytoplasm. Like the overexpression model, heterozygous p.T58N knockin mice displayed similar changes in subcellular MYC localization, progenitor expansion, transcriptional signatures, and develop hematopoietic tumors. CONCLUSIONS: This study uncovers that MBI MYC mutations alter RNA nucleocytoplasmic transport mechanisms to contribute to the development of hematopoietic malignancies.

14.
Proc Natl Acad Sci U S A ; 107(25): 11393-8, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20534503

ABSTRACT

The endogenous signaling molecule S-nitrosoglutathione (GSNO) and other S-nitrosylating agents can cause full maturation of the abnormal gene product DeltaF508 cystic fibrosis (CF) transmembrane conductance regulator (CFTR). However, the molecular mechanism of action is not known. Here we show that Hsp70/Hsp90 organizing protein (Hop) is a critical target of GSNO, and its S-nitrosylation results in DeltaF508 CFTR maturation and cell surface expression. S-nitrosylation by GSNO inhibited the association of Hop with CFTR in the endoplasmic reticulum. This effect was necessary and sufficient to mediate GSNO-induced cell-surface expression of DeltaF508 CFTR. Hop knockdown using siRNA recapitulated the effect of GSNO on DeltaF508 CFTR maturation and expression. Moreover, GSNO acted additively with decreased temperature, which promoted mutant CFTR maturation through a Hop-independent mechanism. We conclude that GSNO corrects DeltaF508 CFTR trafficking by inhibiting Hop expression, and that combination therapies--using differing mechanisms of action--may have additive benefits in treating CF.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/physiology , Cystic Fibrosis/therapy , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mutation , Nitrogen/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , Cell Line , Cell Membrane/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Endoplasmic Reticulum/metabolism , Genetic Therapy/methods , Humans , Models, Biological , S-Nitrosoglutathione/chemistry , Signal Transduction
15.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-36824728

ABSTRACT

Enkephalins are opioid peptides that modulate analgesia, reward, and stress. In vivo detection of enkephalins remains difficult due to transient and low endogenous concentrations and inherent sequence similarity. To begin to address this we previously developed a system combining in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents (Al-Hasani, 2018, eLife). Here not only do we show improved detection resolution but also a critical discovery in the stabilization of enkephalin detection, which together allowed us to investigate enkephalin release during acute stress. We present an analytical method for Met- and Leu-Enkephalin (Met-Enk & Leu-Enk) detection in the mouse Nucleus Accumbens shell (NAcSh) after acute stress. We confirm that acute stress activates enkephalinergic neurons in the NAcSh using fiber photometry and that this leads to the release of Met- and Leu-Enk. We also demonstrate the dynamics of Met- and Leu-Enk release as well as how they correlate to one another in the ventral NAc shell, which was previously difficult due to the use of approaches that relied on mRNA transcript levels rather than post-translational products. This approach increases spatiotemporal resolution, optimizes the detection of Met-Enkephalin through methionine oxidation, and provides novel insight into the relationship between Met- and Leu-Enkephalin following stress.

16.
J Clin Invest ; 134(4)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38061017

ABSTRACT

Several canonical translocations produce oncofusion genes that can initiate acute myeloid leukemia (AML). Although each translocation is associated with unique features, the mechanisms responsible remain unclear. While proteins interacting with each oncofusion are known to be relevant for how they act, these interactions have not yet been systematically defined. To address this issue in an unbiased fashion, we fused a promiscuous biotin ligase (TurboID) in-frame with 3 favorable-risk AML oncofusion cDNAs (PML::RARA, RUNX1::RUNX1T1, and CBFB::MYH11) and identified their interacting proteins in primary murine hematopoietic cells. The PML::RARA- and RUNX1::RUNX1T1-TurboID fusion proteins labeled common and unique nuclear repressor complexes, implying their nuclear localization. However, CBFB::MYH11-TurboID-interacting proteins were largely cytoplasmic, probably because of an interaction of the MYH11 domain with several cytoplasmic myosin-related proteins. Using a variety of methods, we showed that the CBFB domain of CBFB::MYH11 sequesters RUNX1 in cytoplasmic aggregates; these findings were confirmed in primary human AML cells. Paradoxically, CBFB::MYH11 expression was associated with increased RUNX1/2 expression, suggesting the presence of a sensor for reduced functional RUNX1 protein, and a feedback loop that may attempt to compensate by increasing RUNX1/2 transcription. These findings may have broad implications for AML pathogenesis.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Humans , Mice , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Leukemia, Myeloid, Acute/pathology , Translocation, Genetic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Core Binding Factor beta Subunit , Myosin Heavy Chains/genetics
17.
Sci Rep ; 13(1): 13726, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608002

ABSTRACT

Paragonimiasis is a zoonotic, food-borne trematode infection that affects 21 million people globally. Trematodes interact with their hosts via extracellular vesicles (EV) that carry protein and RNA cargo. We analyzed EV in excretory-secretory products (ESP) released by Paragonimus kellicotti adult worms cultured in vitro (EV ESP) and EV isolated from lung cyst fluid (EV CFP) recovered from infected gerbils. The majority of EV were approximately 30-50 nm in diameter. We identified 548 P. kellicotti-derived proteins in EV ESP by mass spectrometry and 8 proteins in EV CFP of which 7 were also present in EV ESP. No parasite-derived proteins were reliably detected in EV isolated from plasma samples. A cysteine protease (MK050848, CP-6) was the most abundant protein found in EV CFP in all technical and biological replicates. Immunolocalization of CP-6 showed strong labeling in the tegument of P. kellicotti and in the adjacent cyst and lung tissue that contained worm eggs. It is likely that CP-6 present in EV is involved in parasite-host interactions. These results provide new insights into interactions between Paragonimus and their mammalian hosts, and they provide potential clues for development of novel diagnostic tools and treatments.


Subject(s)
Cysts , Extracellular Vesicles , Paragonimus , Animals , Proteome , Gerbillinae , Lung
18.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961226

ABSTRACT

Somatic missense mutations in the phosphodegron domain of the MYC gene ( M YC Box I) are detected in the dominant clones of a subset of acute myeloid leukemia (AML) patients, but the mechanisms by which they contribute to AML are unknown. To unveil unique proprieties of MBI MYC mutant proteins, we systematically compared the cellular and molecular consequences of expressing similar oncogenic levels of wild type and MBI mutant MYC. We found that MBI MYC mutants can accelerate leukemia by driving unique transcriptional signatures in highly selected, myeloid progenitor subpopulations. Although these mutations increase MYC stability, they overall dampen MYC chromatin localization and lead to a cytoplasmic accumulation of the mutant proteins. This phenotype is coupled with increased translation of RNA binding proteins and nuclear export machinery, which results in altered RNA partitioning and accelerated decay of select transcripts encoding proapoptotic and proinflammatory genes. Heterozygous knockin mice harboring the germline MBI mutation Myc p.T73N exhibit cytoplasmic MYC localization, myeloid progenitors' expansion with similar transcriptional signatures to the overexpression model, and eventually develop hematological malignancies. This study uncovers that MBI MYC mutations alter MYC localization and disrupt mRNA subcellular distribution and turnover of select transcripts to accelerate tumor initiation and growth.

19.
J Proteome Res ; 11(11): 5515-26, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22985349

ABSTRACT

Retinal ganglion cells (RGCs) transmit visual information topographically from the eye to the brain, creating a map of visual space in retino-recipient nuclei (retinotopy). This process is affected by retinal activity and by activity-independent molecular cues. Phr1, which encodes a presumed E3 ubiquitin ligase (PHR1), is required presynaptically for proper placement of RGC axons in the lateral geniculate nucleus and the superior colliculus, suggesting that increased levels of PHR1 target proteins may be instructive for retinotopic mapping of retinofugal projections. To identify potential target proteins, we conducted a proteomic analysis of optic nerve to identify differentially abundant proteins in the presence or absence of Phr1 in RGCs. 1D gel electrophoresis identified a specific band in controls that was absent in mutants. Targeted proteomic analysis of this band demonstrated the presence of PHR1. Additionally, we conducted an unbiased proteomic analysis that identified 30 proteins as being significantly different between the two genotypes. One of these, heterogeneous nuclear ribonucleoprotein M (hnRNP-M), regulates antero-posterior patterning in invertebrates and can function as a cell surface adhesion receptor in vertebrates. Thus, we have demonstrated that network analysis of quantitative proteomic data is a useful approach for hypothesis generation and for identifying biologically relevant targets in genetically altered biological models.


Subject(s)
Carrier Proteins/physiology , Optic Nerve/metabolism , Proteome , Retinal Ganglion Cells/metabolism , Animals , Base Sequence , Blotting, Western , Carrier Proteins/genetics , Chromatography, Liquid , DNA Probes , Electrophoresis, Polyacrylamide Gel , Immunohistochemistry , In Situ Hybridization , Mass Spectrometry , Mice , Mice, Knockout , Ubiquitin-Protein Ligases
20.
PLoS Negl Trop Dis ; 16(8): e0010679, 2022 08.
Article in English | MEDLINE | ID: mdl-35976975

ABSTRACT

Paragonimus kellicotti is a zoonotic lung fluke infection, the agent of North American paragonimiasis, and an excellent model for other Paragonimus infections. The excretory/secretory proteins (ESP) released by parasites and presented at the parasite-host interface are frequently proposed to be useful targets for drugs and/or vaccines In vitro culture conditions may alter ESP compared to those produced in vivo. In order to investigate ESPs produced in vivo we took advantage of the fact that adult P. kellicotti reproduce in the lungs of experimentally infected gerbils in tissue cysts. We performed a mass-spectrometric analysis of adult P. kellicotti soluble somatic protein (SSPs) extracts, excreted/secreted proteins (ESPs) produced by adult worms during in vitro culture, and lung cyst fluid proteins (CFPs) from experimentally infected gerbils. We identified 2,137 P. kellicotti proteins that were present in at least two of three biological replicates and supported by at least two peptides. Among those were 1,914 proteins found in SSP, 947 in ESP and 37 in CFP. In silico analysis predicted that only 141 of the total 2,137 proteins were secreted via classical or non-classical pathways. The most abundant functional categories in SSP were storage and oxidative metabolism. The most abundant categories in ESP were proteins related to metabolism and signal transduction. The 37 parasite-related proteins in CFP belonged to 11 functional categories. The largest groups were proteins with unknown function, cytoskeletal proteins and proteasome machinery. 29 of these 37 proteins were shared among all three sample types. To our knowledge, this is the first study that compares in vitro and in vivo ESP for any Paragonimus species. This study has provided new insights into ESPs of food-borne trematodes that are produced and released in vivo. Proteins released at the host-parasite interface may help the parasite evade host immunity and may represent new targets for novel treatments or diagnostic tests for paragonimiasis.


Subject(s)
Cysts , Lung Diseases , Paragonimiasis , Paragonimus , Animals , Gerbillinae , Lung/parasitology , Paragonimus/physiology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL