Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Org Biomol Chem ; 22(25): 5181-5192, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864283

ABSTRACT

The development of luminescent molecular materials has advanced rapidly in recent decades, primarily driven by the synthesis of novel emissive compounds and a deeper understanding of excited-state mechanisms. Herein, we report a streamlined synthetic approach to light-emitting diazapolyoxa- and polyazamacrocycles N2CnOxQ and NyCnQ (n = 3-10; x = 2, 3; y = 2-5), incorporating a 2,3-diphenylquinoxaline residue (DPQ). This synthetic strategy based on macrocyclization through Pd-catalyzed amination reaction yields the target macrocycles in good or high yields (46-92%), enabling precise control over their structural parameters. A key role of the PhPF-tBu ligand belonging to the JosiPhos series in this macrocyclization was elucidated through DFT computation. This macrocyclization reaction eliminates the need for complex protecting-deprotecting procedures of secondary amine groups, offering a convenient and scalable method for the preparation of target compounds. Moreover, it boasts a potentially broad substrate scope, making it promising for structure-properties studies within photophysics, sensor development, and material synthesis. Photophysical properties of representative macrocycles were investigated, employing spectroscopic techniques and DFT computation. It was demonstrated that DPQ-containing macrocycles display aggregation-induced emission in a DCM-hexane solvent mixture despite the presence of flexible tethers within their structures. Single-crystal X-ray diffraction analysis of a representative compound N2C8O3Q allowed us to gain deeper insight into its molecular structure and AIE behaviour. The emissive aggregates of the N2C10O3Q macrocycle were immobilized on filter paper yielding AIE-exhibiting test strips for measuring acidity in vapors and in aqueous media.

2.
Inorg Chem ; 62(8): 3431-3444, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36752761

ABSTRACT

The ß-substituted porphyrinoids commonly used to form functional assembled systems in nature yet are still scarcely used in material chemistry probably due to the laborious synthesis of these compounds. In this work, ß-octa[(4-diethoxyphosphoryl)phenyl]porphyrin (2HOPPP) and its metal (Zn(II), Cd(II), Cu(II), and Ni(II)) complexes were prepared in good yields. These highly soluble chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence), electrochemical, and spectroelectrochemical methods. Attachment of the electron-deficient residue (ArP(O)(OEt)2) to the porphyrin macrocycle leads to easier reductions and harder oxidations of the macrocycle for all complexes studied as compared to corresponding meso-tetra[4-(diethoxyphosphoryl)phenyl]porphyrin derivatives reported previously. We demonstrated that the strong electron-deficient character of the MOPPP porphyrins results principally from the increase in the number of electron-withdrawing groups at the periphery of the tetrapyrrolic macrocycle. Electron-deficient porphyrins are highly required in supramolecular and material chemistry in part due to their ability to form supramolecular assemblies via the coordination of axial ligands to the central metal atom. According to single-crystal X-ray data, ZnOPPP forms in the crystalline phase dimers in which each of the two tetrapyrrolic macrocycles is connected through an unusual combination of hydrogen bonding of two phosphoryl groups and the water molecules axially coordinated to the zinc atom of the partner molecule. The involvement of water molecules in porphyrin binding allows for an increase of distance between two porphyrin mean N4 planes, up to 4.478 Å. The offset of phosphoryl groups attached to the macrocycle through a 1,4-phenylene spacer withdraws the whole porphyrin macrocycle of one molecule from spatial overlap with the macrocycle of a partner molecule and increases the Zn-Zn distance up to 10.372 Å. This still unknown type of porphyrin dimers allows one to get deeper insights into the organization of naturally occurring tetrapyrrolic macrocycles. ZnOPPP also forms a labile dimeric complex in 5.3 × 10-7-5.8 × 10-5 M chloroform solutions. In contrast, other complexes prepared in this work exist as monomeric species under these experimental conditions. The self-association constant of ZnOPPP has been determined by electronic absorption spectroscopy.

3.
Sensors (Basel) ; 23(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36991688

ABSTRACT

This work is focused on the age-old challenge of developing optical sensors for acidity measurements in low-pH aqueous solutions (pH < 5). We prepared halochromic (3-aminopropyl)amino-substituted quinoxalines QC1 and QC8 possessing different hydrophilic-lipophilic balance (HLB) and investigated them as molecular components of pH sensors. Embedding the hydrophilic quinoxaline QC1 into the agarose matrix by sol-gel process allows for fabrication of pH responsive polymers and paper test strips. The emissive films thus obtained can be used for a semi-quantitative dual-color visualization of pH in aqueous solution. Being exposed to acidic solutions with pH in the range of 1-5, they rapidly give different color changes when the analysis is performed in daylight or under irradiation at 365 nm. Compared with classical non-emissive pH indicators, these dual-responsive pH sensors allow for an increase in the accuracy of pH measurements, particularly in complex environmental samples. pH indicators for quantitative analysis can be prepared by the immobilization of amphiphilic quinoxaline QC8 using Langmuir-Blodgett (LB) and Langmuir-Schäfer (LS) techniques. Compound QC8 possessing two long alkyl chains (n-C8H17) forms stable Langmuir monolayers at the air-water interface, and these monolayers can be successfully transferred onto hydrophilic quartz and hydrophobic polyvinylchlorid (PVC) substrates using LB and LS techniques, respectively. The 30-layer films thus obtained are emissive, reveal excellent stability, and can be used as dual-responsive pH indicators for quantitative measurements in real-world samples with pH in the range of 1-3. The films can be regenerated by immersing them in basic aqueous solution (pH = 11) and can be reused at least five times.

4.
J Colloid Interface Sci ; 640: 281-295, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36863184

ABSTRACT

In recent years, the study of niosomes as nanocarriers alternative to liposomes has received increasing attention. In contrast to well-studied liposome membranes, many aspects of the behavior of analogous niosome bilayers have not been studied. This paper considers one of these aspects related to the communication between the physicochemical properties of planar and vesicular objects. We present the first results of comparative studies of Langmuir monolayers of binary and ternary (with cholesterol) mixtures of non-ionic surfactants based on sorbitan esters and niosomal structures assembled from the same materials. The Thin-Film Hydration (TFH) method in the gentle shaking version was used to produce the particles of large sizes, while small unilamellar high quality vesicles with a unimodal distribution of particles were prepared by TFH using ultrasonic treatment and extrusion. An analysis of the structural organization and phase state of monolayers based on compression isotherms and supplemented by thermodynamic calculations, as well as the results of determining the particle morphology, polarity and microviscosity of niosome shells, made it possible to obtain fundamental data on the intermolecular interactions of the components and their packing in shells and to relate these data to the properties of niosomes. This relationship can be used to optimize the composition of niosome membranes and predict the behavior of these vesicular systems. It was shown that cholesterol excess creates regions of bilayers with increased rigidity (like "lipid rafts"), which hinders the process of folding film fragments into small niosomes.

5.
J Colloid Interface Sci ; 530: 521-531, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29990788

ABSTRACT

Fabricating of solid-supported hybrid nanostructures remains a challenging problem because it is difficult to control all interfacial interactions influencing the structure and stability of these systems. The most widely used approach to solving this problem is a bottom-up assembly on the surface templates such as self-assembled monolayers (SAMs). Herein we suggest an alternative approach to tailoring solid surfaces by a formation of an interlayer anchoring the nanostructured film to the solid substrate. We formed a multifunctional bilayer template (MBT), comprising an adhesive monolayer of graphene oxide and a functional ordered monolayer of metal organic compound (Zinc-tetra(4-pyridyl)porphyrin) directing further bottom-up growth of the nanostructures. The one-step assembly of MBT proceeded spontaneously at the air/water interface and was monitored by an in-situ fiber optic absorption and fluorescence spectroscopy in a Langmuir trough. Dilatation surface rheology was applied to study the evolution of molecular organization of the monolayers upon adding the zinc ions, GO and their mixture into the subphase. The MBT templates were used for the assembly of porphyrin-based SURMOFs with two different structures. Our strategy makes it possible to assemble surface-anchored nanostructures avoiding the use of SAMs and it can be extended to other types of ultrathin hybrid systems.

SELECTION OF CITATIONS
SEARCH DETAIL