Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Diabetologia ; 67(1): 199-208, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935826

ABSTRACT

AIMS/HYPOTHESIS: Compromised pancreatic sympathetic innervation has been suggested as a factor involved in both immune-mediated beta cell destruction and endocrine dysregulation of pancreatic islets. To further explore these intriguing findings, new techniques for in vivo assessment of pancreatic innervation are required. This is a retrospective study that aimed to investigate whether the noradrenaline (norepinephrine) analogue 11C-hydroxy ephedrine (11C-HED) could be used for quantitative positron emission tomography (PET) imaging of the sympathetic innervation of the human pancreas. METHODS: In 25 individuals with type 2 diabetes and 64 individuals without diabetes, all of whom had previously undergone 11C-HED-PET/CT because of pheochromocytoma or paraganglioma (or suspicion thereof), the 11C-HED standardised uptake value (SUVmean), 11C-HED specific binding index (SBI), pancreatic functional volume (FV, in ml), functional neuronal volume (FNV, calculated as SUVmean × FV), specific binding index with functional volume (SBI FV, calculated as SBI × FV) and attenuation on CT (HU) were investigated in the entire pancreas, and additionally in six separate anatomical pancreatic regions. RESULTS: Generally, 11C-HED uptake in the pancreas was high, with marked individual variation, suggesting variability in sympathetic innervation. Moreover, pancreatic CT attenuation (HU) (p<0.001), 11C-HED SBI (p=0.0049) and SBI FV (p=0.0142) were lower in individuals with type 2 diabetes than in individuals without diabetes, whereas 11C-HED SUVmean (p=0.15), FV (p=0.73) and FNV (p=0.30) were similar. CONCLUSIONS/INTERPRETATION: We demonstrate the feasibility of using 11C-HED-PET for non-invasive assessment of pancreatic sympathetic innervation in humans. These findings warrant further prospective evaluation, especially in individuals with theoretical defects in pancreatic sympathetic innervation, such as those with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Retrospective Studies , Positron Emission Tomography Computed Tomography , Sympathetic Nervous System , Positron-Emission Tomography/methods , Pancreas/diagnostic imaging , Ephedrine , Heart
2.
Chemphyschem ; : e202400329, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041294

ABSTRACT

C[C4H4], the simplest compound of the [4]-pyramidane family, has so far eluded experimental characterization, although several of its analogs, E[C4(SiMe3)4] in which the E apex atom is a tetrel group element, have been successfully prepared. The non-classical bonding mode of E, similar to that found in propellanes, has prompted a considerable number of theoretical studies to unravel the nature of the apex-base interaction. Here, we contribute to this knowledge by analyzing the electron localization function (ELF) and classical QTAIM descriptors; as well the statistical distribution of electrons in atomic regions by means of the so-called electron distribution functions (EDFs), calculation of multicenter indices (MCI) as aromaticity descriptors and by performing orbital invariant energy decompositions with the interacting quantum atoms (IQA) approach on a series of E[C4(SiMe3)4] compounds. We find that the bonding evolves from covalent to electrostatic as E changes from C to Pb, with an anomaly when E=Si, which is shown to be the most charged moiety, compatible with an aromatic [C4(SiMe3)4]2- scaffold in the pyramidane base.

3.
J Chem Phys ; 160(14)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38591678

ABSTRACT

Despite the importance of the one-particle picture provided by the orbital paradigm, a rigorous understanding of the spatial distribution of electrons in molecules is still of paramount importance to chemistry. Considerable progress has been made following the introduction of topological approaches, capable of partitioning space into chemically meaningful regions. They usually provide atomic partitions, for example, through the attraction basins of the electron density in the quantum theory of atoms in molecules (QTAIM) or electron-pair decompositions, as in the case of the electron localization function (ELF). In both cases, the so-called electron distribution functions (EDFs) provide a rich statistical description of the electron distribution in these spatial domains. Here, we take the EDF concept to a new fine-grained limit by calculating EDFs in the QTAIM ∩ ELF intersection domains. As shown in AHn systems based on main group elements, as well as in the CO, NO, and BeO molecules, this approach provides an exquisitely detailed picture of the electron distribution in molecules, allowing for an insightful combination of the distribution of electrons between Lewis entities (such as bonds and lone pairs) and atoms at the same time. Besides mean-field calculations, we also explore the impact of electron correlation through Hartree-Fock (HF), density functional theory (DFT) (B3LYP), and CASSCF calculations.

4.
Diabetologia ; 66(8): 1431-1441, 2023 08.
Article in English | MEDLINE | ID: mdl-37221247

ABSTRACT

AIM/HYPOTHESIS: This study aimed to investigate the safety and efficacy of treatment with allogeneic Wharton's jelly-derived mesenchymal stromal cells (MSCs) in recent-onset type 1 diabetes. METHODS: A combined Phase I/II trial, composed of a dose escalation followed by a randomised double-blind placebo-controlled study in parallel design, was performed in which treatment with allogeneic MSCs produced as an advanced therapy medicinal product (ProTrans) was compared with placebo in adults with newly diagnosed type 1 diabetes. Inclusion criteria were a diagnosis of type 1 diabetes <2 years before enrolment, age 18-40 years and a fasting plasma C-peptide concentration >0.12 nmol/l. Randomisation was performed with a web-based randomisation system, with a randomisation code created prior to the start of the study. The randomisation was made in blocks, with participants randomised to ProTrans or placebo treatment. Randomisation envelopes were kept at the clinic in a locked room, with study staff opening the envelopes at the baseline visits. All participants and study personnel were blinded to group assignment. The study was conducted at Karolinska University Hospital, Stockholm, Sweden. RESULTS: Three participants were included in each dose cohort during the first part of the study. Fifteen participants were randomised in the second part of the study, with ten participants assigned to ProTrans treatment and five to placebo. All participants were analysed for the primary and secondary outcomes. No serious adverse events related to treatment were observed and, overall, few adverse events (mainly mild upper respiratory tract infections) were reported in the active treatment and placebo arms. The primary efficacy endpoint was defined as Δ-change in C-peptide AUC for a mixed meal tolerance test at 1 year following ProTrans/placebo infusion compared with baseline performance prior to treatment. C-peptide levels in placebo-treated individuals declined by 47%, whereas those in ProTrans-treated individuals declined by only 10% (p<0.05). Similarly, insulin requirements increased in placebo-treated individuals by a median of 10 U/day, whereas insulin needs of ProTrans-treated individuals did not change over the follow-up period of 12 months (p<0.05). CONCLUSIONS/INTERPRETATION: This study suggests that allogeneic Wharton's jelly-derived MSCs (ProTrans) is a safe treatment for recent-onset type 1 diabetes, with the potential to preserve beta cell function. TRIAL REGISTRATION: ClinicalTrials.gov NCT03406585 FUNDING: The sponsor of the clinical trial is NextCell Pharma AB, Stockholm, Sweden.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Mesenchymal Stem Cells , Adult , Humans , Adolescent , Young Adult , Diabetes Mellitus, Type 1/drug therapy , SARS-CoV-2 , Insulin/therapeutic use , C-Peptide , Treatment Outcome , Double-Blind Method , Umbilical Cord
5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614312

ABSTRACT

Catalytic systems based on sub-nanoclusters deposited over different supports are promising for very relevant chemical transformations such as many electrocatalytic processes as the ORR. These systems have been demonstrated to be very fluxional, as they are able to change shape and interconvert between each other either alone or in the presence of adsorbates. In addition, an accurate representation of their catalytic activity requires the consideration of ensemble effects and not a single structure alone. In this sense, a reliable theoretical methodology should assure an accurate and extensive exploration of the potential energy surface to include all the relevant structures and with correct relative energies. In this context, we applied DFT in conjunction with global optimization techniques to obtain and analyze the characteristics of the many local minima of Pt6 sub-nanoclusters over a carbon-based support (graphene)-a system with electrocatalytic relevance. We also analyzed the magnetism and the charge transfer between the clusters and the support and paid special attention to the dependence of dispersion effects on the ensemble characteristics. We found that the ensembles computed with and without dispersion corrections are qualitatively similar, especially for the lowest-in-energy clusters, which we attribute to a (mainly) covalent binding to the surface. However, there are some significant variations in the relative stability of some clusters, which would significantly affect their population in the ensemble composition.


Subject(s)
Graphite , Carbon , Catalysis
6.
J Sleep Res ; 31(2): e13472, 2022 04.
Article in English | MEDLINE | ID: mdl-34476847

ABSTRACT

The hormone fibroblast growth factor 21 (FGF21) modulates tissue metabolism and circulates at higher levels in metabolic conditions associated with chronic sleep-wake disruption, such as type 2 diabetes and obesity. In the present study, we investigated whether acute sleep loss impacts circulating levels of FGF21 and tissue-specific production, and response pathways linked to FGF21. A total of 15 healthy normal-weight young men participated in a randomised crossover study with two conditions, sleep loss versus an 8.5-hr sleep window. The evening before each intervention, fasting blood was collected. Fasting, post-intervention morning skeletal muscle and adipose tissue samples underwent quantitative polymerase chain reaction and DNA methylation analyses, and serum FGF21 levels were measured before and after an oral glucose tolerance test. Serum levels of FGF21 were higher after sleep loss compared with sleep, both under fasting conditions and following glucose intake (~27%-30%, p = 0.023). Fasting circulating levels of fibroblast activation protein, a protein which can degrade circulating FGF21, were not altered by sleep loss, whereas DNA methylation in the FGF21 promoter region increased only in adipose tissue. However, even though specifically the muscle exhibited transcriptional changes indicating adverse alterations to redox and metabolic homeostasis, no tissue-based changes were observed in expression of FGF21, its receptors, or selected signalling targets, in response to sleep loss. In summary, we found that acute sleep loss resulted in increased circulating levels of FGF21 in healthy young men, which may occur independent of a tissue-based stress response in metabolic peripheral tissues. Further studies may decipher whether changes in FGF21 signalling after sleep loss modulate metabolic outcomes associated with sleep or circadian disruption.


Subject(s)
Diabetes Mellitus, Type 2 , Cross-Over Studies , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Male , Sleep
7.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144774

ABSTRACT

The somewhat elusive concept of aromaticity plays an undeniable role in the chemical narrative, often being considered the principal cause of the unusual properties and stability exhibited by certain π skeletons. More recently, the concept of aromaticity has also been utilised to explain the modulation of the strength of non-covalent interactions (NCIs), such as hydrogen bonding (HB), paving the way towards the in silico prediction and design of tailor-made interacting systems. In this work, we try to shed light on this area by exploiting real space techniques, such as the Quantum Theory of Atoms in Molecules (QTAIM), the Interacting Quantum Atoms (IQA) approaches along with the electron delocalisation indicators Aromatic Fluctuation (FLU) and Multicenter (MCI) indices. The QTAIM and IQA methods have been proven capable of providing an unbiased and rigorous picture of NCIs in a wide variety of scenarios, whereas the FLU and MCI descriptors have been successfully exploited in the study of diverse aromatic and antiaromatic systems. We used a collection of simple archetypal examples of aromatic, non-aromatic and antiaromatic moieties within organic molecules to examine the changes in π delocalisation and aromaticity induced by the Aromaticity and Antiaromaticity Modulated Hydrogen Bonds (AMHB). We observed fundamental differences in the behaviour of systems containing the HB acceptor within and outside the ring, e.g., a destabilisation of the rings in the former as opposed to a stabilisation of the latter upon the formation of the corresponding molecular clusters. The results of this work provide a physically sound basis to rationalise the strengthening and weakening of AMHBs with respect to suitable non-cyclic non-aromatic references. We also found significant differences in the chemical bonding scenarios of aromatic and antiaromatic systems in the formation of AMHB. Altogether, our investigation provide novel, valuable insights about the complex mutual influence between hydrogen bonds and π systems.

8.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884797

ABSTRACT

The anti-inflammatory role of regulatory B cells (Breg cells) has been associated with IL-35 based on studies of experimental autoimmune uveitis and encephalitis. The role of Breg cells and IL-35+ Breg cells for type 1 diabetes (T1D) remains to be investigated. We studied PBMCs from T1D subjects and healthy controls (HC) and found lowered proportions of Breg cells and IL-35+ Breg cells in T1D. To elucidate the role of Breg cells, the lymphoid organs of two mouse models of T1D were examined. Lower proportions of Breg cells and IL-35+ Breg cells were found in the animal models of T1D compared with control mice. In addition, the systemic administration of recombinant mouse IL-35 prevented hyperglycemia after multiple low dose streptozotocin (MLDSTZ) injections and increased the proportions of Breg cells and IL-35+ Breg cells. A higher proportion of IFN-γ+ cells among Breg cells were found in the PBMCs of the T1D subjects. In the MLDSTZ mice, IL-35 administration decreased the proportions of IFN-γ+ cells among the Breg cells. Our data illustrate that Breg cells may play an important role in the development of T1D and that IL-35 treatment prevents the development of hyperglycemia by maintaining the phenotype of the Breg cells under an experimental T1D condition.


Subject(s)
Anti-Inflammatory Agents/pharmacology , B-Lymphocytes, Regulatory/immunology , Diabetes Mellitus, Type 1/prevention & control , Hyperglycemia/prevention & control , Interleukins/pharmacology , Adult , Animals , Anti-Inflammatory Agents/blood , Cells, Cultured , Disease Models, Animal , Female , Humans , Hyperglycemia/chemically induced , Interferon-gamma/blood , Interleukins/blood , Lymphocyte Count , Male , Mice , Mice, Inbred NOD , Streptozocin/toxicity
9.
Int J Mol Sci ; 20(23)2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31757005

ABSTRACT

Type 1 diabetes (T1D) is characterized by the loss of insulin-producing cells and hence insulin secretion and metabolic control. In addition to insulin, there are a number of hormones and cytokines that influence metabolism, and many of these can be secreted from brown adipose tissue (BAT). However, the presence and activity of BAT in T1D have not been studied, despite the fact that preclinical studies have shown that transplantation of BAT in mouse models of T1D can restore metabolic control. The metabolic activity of BAT, white adipose tissue (WAT), and skeletal muscle was investigated in patients with T1D (n = 11) by 2-deoxy-2-(18F)fluoro-D-glucose PET/CT after cold stimulation. Functional BAT was detected in 4 out of 11 individuals with T1D with a prevalence of 36%. The glucose utilization rate in the supraclavicular BAT regions ranged from 0.75-38.7 µmol × min-1 × 100 g-1. The glucose utilization per gram tissue was higher in BAT when compared with both WAT (p = 0.049) and skeletal muscle (p = 0.039). However, no correlation between BAT activity and metabolic control or insulin requirements was found. In conclusion, for the first time, cold-induced BAT was detected in patients with T1D with a wide range in metabolic activity. Contrary to findings in animal models, the metabolic activity of BAT had negligible impact on insulin requirements or metabolic control in T1D under normal physiological conditions.


Subject(s)
Adipose Tissue, Brown/metabolism , Diabetes Mellitus, Type 1/metabolism , Adipose Tissue, Brown/diagnostic imaging , Adult , Diabetes Mellitus, Type 1/diagnostic imaging , Female , Fluorodeoxyglucose F18 , Glucose/metabolism , Humans , Male , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals
10.
Am J Transplant ; 18(7): 1735-1744, 2018 07.
Article in English | MEDLINE | ID: mdl-29288549

ABSTRACT

Macroencapsulation devices provide the dual possibility of immunoprotecting transplanted cells while also being retrievable, the latter bearing importance for safety in future trials with stem cell-derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The ßAir device solves this with an incorporated refillable oxygen tank. This phase 1 study evaluated the safety and efficacy of implanting the ßAir device containing allogeneic human pancreatic islets into patients with type 1 diabetes. Four patients were transplanted with 1-2 ßAir devices, each containing 155 000-180 000 islet equivalents (ie, 1800-4600 islet equivalents per kg body weight), and monitored for 3-6 months, followed by the recovery of devices. Implantation of the ßAir device was safe and successfully prevented immunization and rejection of the transplanted tissue. However, although beta cells survived in the device, only minute levels of circulating C-peptide were observed with no impact on metabolic control. Fibrotic tissue with immune cells was formed in capsule surroundings. Recovered devices displayed a blunted glucose-stimulated insulin response, and amyloid formation in the endocrine tissue. We conclude that the ßAir device is safe and can support survival of allogeneic islets for several months, although the function of the transplanted cells was limited (Clinicaltrials.gov: NCT02064309).


Subject(s)
Bioartificial Organs , Diabetes Mellitus, Type 1/therapy , Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Pancreas, Artificial , Adolescent , Blood Glucose/analysis , Capsules , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Male , Monitoring, Physiologic , Prognosis
11.
Diabetologia ; 59(9): 1968-72, 2016 09.
Article in English | MEDLINE | ID: mdl-27306617

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to investigate pancreatic perfusion and its response to a glucose load in patients with type 1 diabetes mellitus compared with non-diabetic ('healthy') individuals. METHODS: Eight individuals with longstanding type 1 diabetes and ten sex-, age- and BMI-matched healthy controls underwent dynamic positron emission tomography scanning with (15)O-labelled water before and after intravenous administration of glucose. Perfusion in the pancreas was measured. Portal and arterial hepatic perfusion were recorded as references. RESULTS: Under fasting conditions, total pancreatic perfusion was on average 23% lower in the individuals with diabetes compared with healthy individuals. Glucose increased total pancreatic and portal hepatic blood perfusion in healthy individuals by 48% and 38%, respectively. In individuals with diabetes there was no significant increase in either total pancreatic or portal hepatic perfusion. CONCLUSIONS/INTERPRETATION: Individuals with type 1 diabetes have reduced basal pancreatic perfusion and a severely impaired pancreatic and splanchnic perfusion response to intravenous glucose stimulation.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Glucose/pharmacology , Pancreas/drug effects , Pancreas/metabolism , Perfusion , Adolescent , Adult , Female , Humans , Insulin/metabolism , Male , Positron-Emission Tomography , Young Adult
12.
Curr Diab Rep ; 15(12): 104, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26458375

ABSTRACT

The prevalence of type 2 diabetes is increasing worldwide, and while numerous treatments exist, none of the current pharmacologic therapies is curative. Pharmacologic approaches that increase beta cell mass may present an avenue for actual cure. There have been numerous reports on factors that can induce beta cell proliferation in rodents, whereas there are still very limited data on the occurrence of beta cell proliferation in humans. The recent discovery of the hormone betatrophin, which in mice counteracted glucose intolerance induced by insulin resistance by potently stimulating beta cell proliferation, has boosted the hope for a new target for drug development for the treatment of diabetes mellitus in humans. With the encouraging preclinical findings as a background, this review presents the available clinical data on betatrophin and discusses its possible role in humans.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Peptide Hormones/blood , Peptide Hormones/therapeutic use , Animals , Cell Proliferation , Glucose Intolerance , Humans , Insulin Resistance , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects
13.
Diabetologia ; 57(1): 50-3, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24078058

ABSTRACT

AIMS/HYPOTHESIS: The hormone betatrophin was recently described as a potent stimulator of beta cell proliferation in mice. Insulin resistance, but not insulin deficiency, caused upregulation of betatrophin expression. If these findings were found to be fully applicable in humans, this would open up the possibility of future betatrophin treatment in type 1 diabetes. The present study measured for the first time betatrophin concentrations in humans and tested the hypothesis that there would be no difference in circulating betatrophin concentrations between patients with type 1 diabetes and healthy individuals. METHODS: Betatrophin concentrations in plasma of 33 patients with type 1 diabetes and 24 age-matched healthy controls were measured by ELISA. The study participants were characterised for blood lipids, BMI, plasma glucose and HbA1c, and, for the diabetic patients, their insulin requirements and any residual C-peptide concentrations. RESULTS: Plasma betatrophin concentrations were normally ~300 pg/ml, but were approximately doubled in patients with type 1 diabetes. In the patients, there were no correlations between betatrophin and age, blood lipids, BMI, glucose control or insulin requirement, whereas in controls betatrophin levels increased with age. BMI, blood pressure and triacylglycerol, LDL-cholesterol and HDL-cholesterol levels were similar in patients and healthy controls. CONCLUSIONS/INTERPRETATION: Circulating concentrations of betatrophin are increased in type 1 diabetes in contrast with what was recently described in an insulin-deficient mouse model. However, increased betatrophin concentrations do not protect against loss of C-peptide. Betatrophin treatment in type 1 diabetes would therefore probably not be successful without the use of supraphysiological doses or a combination with immune regulatory treatment.


Subject(s)
Diabetes Mellitus, Type 1/blood , Peptide Hormones/blood , Adult , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins , C-Peptide/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Young Adult
14.
BMJ Open Diabetes Res Care ; 12(1)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413173

ABSTRACT

INTRODUCTION: The rate of progression to complete insulin deficiency varies greatly in type 1 diabetes. This constitutes a challenge, especially when randomizing patients in intervention trials aiming to preserve beta cell function. This study aimed to identify biomarkers predictive of either a rapid or slow disease progression in children with new-onset type 1 diabetes. RESEARCH DESIGN AND METHODS: A retrospective, longitudinal cohort study of children (<18 years) with type 1 diabetes (N=46) was included at diagnosis and followed until complete insulinopenia (C-peptide <0.03 nmol/L). Children were grouped into rapid progressors (n=20, loss within 30 months) and slow progressors (n=26). A sex-matched control group of healthy children (N=45) of similar age was included for comparison. Multiple biomarkers were assessed by proximity extension assay (PEA) at baseline and follow-up. RESULTS: At baseline, rapid progressors had lower C-peptide and higher autoantibody levels than slow. Three biomarkers were higher in the rapid group: carbonic anhydrase 9, corticosteroid 11-beta-dehydrogenase isozyme 1, and tumor necrosis factor receptor superfamily member 21. In a linear mixed model, 25 proteins changed over time, irrespective of group. One protein, a coxsackievirus B-adenovirus receptor (CAR) increased over time in rapid progressors. Eighty-one proteins differed between type 1 diabetes and healthy controls. Principal component analysis could not distinguish between rapid, slow, and healthy controls. CONCLUSIONS: Despite differences in individual proteins, the combination of multiple biomarkers analyzed by PEA could not distinguish the rate of progression in children with new-onset type 1 diabetes. Only one marker was altered significantly when considering both time and group effects, namely CAR, which increased significantly over time in the rapid group. Nevertheless, we did find some markers that may be useful in predicting the decline of the C-peptide. Moreover, these could potentially be important for understanding type 1 diabetes pathogenesis.


Subject(s)
Diabetes Mellitus, Type 1 , Child , Humans , Diabetes Mellitus, Type 1/pathology , Insulin/metabolism , Longitudinal Studies , Retrospective Studies , C-Peptide , Autoantibodies , Insulin, Regular, Human , Biomarkers
15.
BMJ Open Diabetes Res Care ; 12(4)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39242123

ABSTRACT

INTRODUCTION: Despite the improvements in diabetes management by continuous glucose monitoring (CGM) it is difficult to capture the complexity of CGM data in one metric. We aimed to develop a clinically relevant multidimensional scoring model with the capacity to identify the most alarming CGM episodes and/or patients from a large cohort. RESEARCH DESIGN AND METHODS: Retrospective CGM data from 2017 to 2020 available in electronic medical records were collected from n=613 individuals with type 1 diabetes (total 82 114 days). A scoring model was developed based on three metrics; glycemic variability percentage, low blood glucose index and high blood glucose index. Values for each dimension were normalized to a numeric score between 0-100. To identify the most representative score for an extended time period, multiple ways to combine the mean score of each dimension were evaluated. Correlations of the scoring model with CGM metrics were computed. The scoring model was compared with interpretations of a clinical expert board (CEB). RESULTS: The dimension of hypoglycemia must be weighted to be representative, whereas the other two can be represented by their overall mean. The scoring model correlated well with established CGM metrics. Applying a score of ≥80 as the cut-off for identifying time periods with a 'true' target fulfillment (ie, reaching all targets for CGM metrics) resulted in an accuracy of 93.4% and a specificity of 97.1%. The accuracy of the scoring model when compared with the CEB was high for identifying the most alarming CGM curves within each dimension of glucose control (overall 86.5%). CONCLUSIONS: Our scoring model captures the complexity of CGM data and can identify both the most alarming dimension of glycemia and the individuals in most urgent need of assistance. This could become a valuable tool for population management at diabetes clinics to enable healthcare providers to stratify care to the patients in greatest need of clinical attention.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus, Type 1 , Hypoglycemia , Humans , Diabetes Mellitus, Type 1/blood , Blood Glucose Self-Monitoring/methods , Blood Glucose/analysis , Retrospective Studies , Female , Male , Adult , Hypoglycemia/diagnosis , Middle Aged , Follow-Up Studies , Young Adult , Glycated Hemoglobin/analysis , Adolescent , Biomarkers/analysis , Biomarkers/blood , Prognosis , Continuous Glucose Monitoring
16.
Article in English | MEDLINE | ID: mdl-37739421

ABSTRACT

INTRODUCTION: Hypoglycemia composes an always present risk in the treatment of type 1 diabetes (T1D) and can be a fatal complication. Many studies on hypoglycemic events are based on self-reported data or focused on the aggregated time below range. We have processed continuous glucose monitoring (CGM) data in children and adolescents with T1D in order to examine all occurring hypoglycemic events. RESEARCH DESIGN AND METHODS: CGM data (mean 168±3 days) from 214 children and adolescents with T1D were analyzed using computer-based algorithms. Patients were divided into three groups based on estimated HbA1c (eHbA1c): (1) ≤48 mmol/mol (n=58); (2) 49-64 mmol/mol (n=113); (3) ≥65 mmol/mol (n=43). The groups were compared concerning descriptive data and CGM metrics with emphasis on the frequency of hypoglycemic events. RESULTS: Only one self-reported event of severe hypoglycemia was registered, while 54 390 hypoglycemic events (<3.9 mmol/L (<70 mg/dL)) were identified from CGM data out of which 11 740 were serious (<3.0 mmol/L (<54 mg/dL)). On average there were 1.5±0.1 hypoglycemic events per 24 hours out of which 1.2±0.1 were mild (3.0-3.9 mmol/L) and 0.3±0.02 serious. Group 1 had a higher frequency of both total and mild hypoglycemic events compared with both groups 2 and 3. However, the frequency of serious hypoglycemic events was similar in all groups. A negative correlation was observed for eHbA1c and total daily and mild hypoglycemic events (r=-0.57 and r=-0.66, respectively, p<0.0001), whereas for serious hypoglycemic events there was only a borderline significance (r=-0.13, p=0.05). CONCLUSIONS: This study shows that hypoglycemic events are a frequent phenomenon in children and adolescents with T1D, occurring regardless of overall metabolic control. Although patients with an HbA1c ≤48 mmol/mol had a higher frequency of mild hypoglycemic events there was no increase in serious hypoglycemic events.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Humans , Adolescent , Child , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Hypoglycemic Agents/adverse effects , Blood Glucose Self-Monitoring , Glycated Hemoglobin , Blood Glucose , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology
17.
Diabetes Ther ; 14(6): 953-965, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37052842

ABSTRACT

INTRODUCTION: To improve the utilization of continuous- and flash glucose monitoring (CGM/FGM) data we have tested the hypothesis that a machine learning (ML) model can be trained to identify the most likely root causes for hypoglycemic events. METHODS: CGM/FGM data were collected from 449 patients with type 1 diabetes. Of the 42,120 identified hypoglycemic events, 5041 were randomly selected for classification by two clinicians. Three causes of hypoglycemia were deemed possible to interpret and later validate by insulin and carbohydrate recordings: (1) overestimated bolus (27%), (2) overcorrection of hyperglycemia (29%) and (3) excessive basal insulin presure (44%). The dataset was split into a training (n = 4026 events, 304 patients) and an internal validation dataset (n = 1015 events, 145 patients). A number of ML model architectures were applied and evaluated. A separate dataset was generated from 22 patients (13 'known' and 9 'unknown') with insulin and carbohydrate recordings. Hypoglycemic events from this dataset were also interpreted by five clinicians independently. RESULTS: Of the evaluated ML models, a purpose-built convolutional neural network (HypoCNN) performed best. Masking the time series, adding time features and using class weights improved the performance of this model, resulting in an average area under the curve (AUC) of 0.921 in the original train/test split. In the dataset validated by insulin and carbohydrate recordings (n = 435 events), i.e. 'ground truth,' our HypoCNN model achieved an AUC of 0.917. CONCLUSIONS: The findings support the notion that ML models can be trained to interpret CGM/FGM data. Our HypoCNN model provides a robust and accurate method to identify root causes of hypoglycemic events.

18.
Dalton Trans ; 52(14): 4585-4594, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36928731

ABSTRACT

The novel P-N ligand 1-((diphenylphosphaneyl)methyl)-1H-benzo-1,2,3-triazole (1), based on a benzotriazole scaffold, has been prepared. The reaction of 1 with [CoCp*(CH3CN)3][BF4]2 and [CoCp*(I)2]2 (Cp* = pentamethylcyclopentadienyl) affords the chelate complexes [CoCp*(CH3CN)(P-N)][BF4]2 (2) and [CoCp*(I)(P-N)]I (3), respectively. Complexes 2 and 3 were studied as catalysts in the fluorination of aromatic and aliphatic acyl chlorides in CH2Cl2, with 3 showing notably higher activities than 2. Subsequently, organic carbonates (dimethyl carbonate and propylene carbonate) were also employed as solvents, which led to shorter reaction times and to the broadening of the substrate scope to a variety of aliphatic halides. Comparative studies between 3 and the analogous complex [CoCp*(I)2(PMePh2)], which features a monodentate phosphane ligand, showed that higher yields were obtained in the case of the former. DFT calculations and experimental studies were performed in order to shed light on the reaction mechanism, which entails the formation of a cobalt fluoride species that reacts via nucleophilic attack with the substrate to afford the corresponding fluorinated compounds.

19.
Article in English | MEDLINE | ID: mdl-36384886

ABSTRACT

INTRODUCTION: The progression to insulin deficiency in type 1 diabetes is heterogenous. This study aimed to identify early characteristics associated with rapid or slow decline of beta-cell function and how it affects the clinical course. RESEARCH DESIGN AND METHODS: Stimulated C-peptide was assessed by mixed meal tolerance test in 50 children (<18 years) during 2004-2017, at regular intervals for 6 years from type 1 diabetes diagnosis. 40% of the children had a rapid decline of stimulated C-peptide defined as no measurable C-peptide (<0.03 nmol/L) 30 months after diagnosis. RESULTS: At diagnosis, higher frequencies of detectable glutamic acid decarboxylase antibodies (GADA) and IA-2A (p=0.027) were associated with rapid loss of beta-cell function. C-peptide was predicted positively by age at 18 months (p=0.017) and 30 months duration (p=0.038). BMI SD scores (BMISDS) at diagnosis predicted higher C-peptide at diagnosis (p=0.006), 3 months (p=0.002), 9 months (p=0.005), 30 months (p=0.022), 3 years (p=0.009), 4 years (p=0.016) and 6 years (p=0.026), whereas high HbA1c and blood glucose at diagnosis predicted a lower C-peptide at diagnosis (p=<0.001) for both comparisons. Both GADA and IA-2A were negative predictors of C-peptide at 9 months (p=0.011), 18 months (p=0.008) and 30 months (p<0.001). Ten children had 22 events of severe hypoglycemia, and they had lower mean C-peptide at 18 months (p=0.025), 30 months (p=0.008) and 6 years (p=0.018) compared with others. Seven of them had a rapid decline of C-peptide (p=0.030), and the odds to experience a severe hypoglycemia were nearly fivefold increased (OR=4.846, p=0.04). CONCLUSIONS: Low age and presence of multiple autoantibodies at diagnosis predicts a rapid loss of beta-cell function in children with type 1 diabetes. Low C-peptide is associated with an increased risk of severe hypoglycemia and higher Hemoglobin A1C. A high BMISDS at diagnosis is predictive of remaining beta-cell function during the 6 years of follow-up.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Child , Adolescent , Humans , Infant , C-Peptide , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Autoantibodies , Hypoglycemia/diagnosis , Insulin
20.
Biomedicines ; 10(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35203466

ABSTRACT

Irisin is a myokine involved in glucose homeostasis. It is primarily expressed in skeletal muscle, but also in the pancreas. This study aimed to elucidate its presence and role in the islets of Langerhans-i.e., its effect on insulin and glucagon secretion as well as on blood flow in the pancreas. The precursor of irisin, fibronectin type III domain-containing protein 5 (FNDC5), was identified in rat and human islets by both qPCR and immunohistochemistry. Both α- and ß-cells stained positive for FNDC5. In human islets, we found that irisin was secreted in a glucose-dependent manner. Neither irisin nor an irisin-neutralizing antibody affected insulin or glucagon secretion from human or rat islets in vitro. The insulin and glucagon content in islets was not altered by irisin. The intravenous infusion of irisin in Sprague Dawley rats resulted in nearly 50% reduction in islet blood flow compared to the control. We conclude that irisin is an islet hormone that has a novel role in pancreatic islet physiology, exerting local vascular effects by diminishing islet blood flow without affecting insulin secretion per se.

SELECTION OF CITATIONS
SEARCH DETAIL