Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 31(10): 15384-15391, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157641

ABSTRACT

Optics in the mid-wave-infra-red (MWIR) band are generally heavy, thick and expensive. Here, we demonstrate multi-level diffractive lenses; one designed using inverse design and another using the conventional propagation phase (the Fresnel zone plate or FZP) with diameter = 25 mm and focal length = 25 mm operating at λ=4µm. We fabricated the lenses by optical lithography and compared their performance. We show that the inverse-designed MDL achieves larger depth-of-focus and better off-axis performance when compared to the FZP at the expense of larger spot size and reduced focusing efficiency. Both lenses are flat with thickness ≤0.5 mm and weigh ≤3.63 g, which are far smaller than their conventional refractive counterparts.

2.
Opt Express ; 31(21): 35225-35244, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859259

ABSTRACT

We report a resonant cavity infrared detector (RCID) with an InAsSb/InAs superlattice absorber with a thickness of only ≈ 100 nm, a 33-period GaAs/Al0.92Ga0.08As distributed Bragg reflector bottom mirror, and a Ge/SiO2/Ge top mirror. At a low bias voltage of 150 mV, the external quantum efficiency (EQE) reaches 58% at the resonance wavelength λres ≈ 4.6 µm, with linewidth δλ = 19-27 nm. The thermal background current for a realistic system scenario with f/4 optic that views a 300 K scene is estimated by integrating the photocurrent generated by background spanning the entire mid-IR spectral band (3-5 µm). The resulting specific detectivity is a factor of 3 lower than for a state-of-the-art broadband HgCdTe device at 300 K, where dark current dominates the noise. However, at 125 K where the suppression of background noise becomes critical, the estimated specific detectivity D* of 5.5 × 1012 cm Hz½/W is more than 3× higher. This occurs despite a non-optimal absorber cut-off that causes the EQE to decrease rapidly with decreasing temperature, e.g., to 33% at 125 K. The present RCID's advantage over the broadband device depends critically on its low EQE at non-resonance wavelengths: ≤ 1% in the range 3.9-5.5 µm. Simulations using NRL MULTIBANDS indicate that impact ionization in the bottom contact and absorber layers dominates the dark current at near ambient temperatures. We expect future design modifications to substantially enhance D* throughout the investigated temperature range of 100-300 K.

3.
Opt Express ; 15(7): 3816-32, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-19532626

ABSTRACT

Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

4.
Opt Lett ; 29(9): 941-3, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15143634

ABSTRACT

We demonstrate the integration of a single-crystal magneto-optical film onto thin silicon-on-insulator (SOI) waveguides by use of direct wafer bonding. Simulations show that the high confinement and asymmetric structure of SOI allows an enhancement of approximately 3x over the nonreciprocal phase shift achieved in previous designs; this value is confirmed by our measurements. Our structure will allow compact magneto-optical nonreciprocal devices, such as isolators, integrated on a silicon waveguiding platform.

5.
Opt Lett ; 29(23): 2755-7, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15605495

ABSTRACT

We report spontaneous Raman scattering at 1550 nm in ultrasmall silicon-on-insulator (SOI) strip waveguides of 0.098-microm2 cross-sectional area. The submicrometer-scale dimensions provide tight optical confinement and, hence, highly efficient Raman scattering with milliwatt-level cw pump powers. The prospect of Raman amplification in such a deeply scaled-down waveguide device in the presence of various loss mechanisms, particularly free-carrier loss that arises from two-photon absorption, is discussed, and the feasibility of high-gain SOI-based fully integrated optical amplifiers is shown.

SELECTION OF CITATIONS
SEARCH DETAIL