Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33186530

ABSTRACT

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Subject(s)
Cerebral Cortex/cytology , Electrophysiological Phenomena , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Transcriptome/genetics , Animals , Female , Gene Expression Profiling , Hippocampus/physiology , Ion Channels/metabolism , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism
2.
Nature ; 592(7852): 86-92, 2021 04.
Article in English | MEDLINE | ID: mdl-33473216

ABSTRACT

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Subject(s)
Action Potentials/physiology , Visual Cortex/anatomy & histology , Visual Cortex/physiology , Animals , Datasets as Topic , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Photic Stimulation , Thalamus/anatomy & histology , Thalamus/cytology , Thalamus/physiology , Visual Cortex/cytology
3.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-38168182

ABSTRACT

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and subcortical regions of the brain, and specific gene expression changes associated with cell senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal aging that will serve as a foundation for the investigation of functional changes in the aging process and the interaction of aging and diseases.

4.
Res Sq ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37292694

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research at SEA-AD.org.

5.
bioRxiv ; 2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38168270

ABSTRACT

The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.

6.
Nat Med ; 10(11): 1190-2, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15502844

ABSTRACT

The Arctic mutation within the amyloid-beta (Abeta) peptide causes Alzheimer disease. In vitro, Arctic-mutant Abeta forms (proto)fibrils more effectively than wild-type Abeta. We generated transgenic mouse lines expressing Arctic-mutant human amyloid precursor proteins (hAPP). Amyloid plaques formed faster and were more extensive in Arctic mice than in hAPP mice expressing wild-type Abeta, even though Arctic mice had lower Abeta(1-42/1-40) ratios. Thus, the Arctic mutation is highly amyloidogenic in vivo.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Hippocampus/metabolism , Mutation/genetics , Plaque, Amyloid/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Neuron ; 109(9): 1449-1464.e13, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33789083

ABSTRACT

Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When cloned into recombinant adeno-associated viruses (AAVs) and delivered to the brain, these enhancers drive transgene expression in specific cortical cell subclasses. We extensively characterized several enhancer AAVs to show that they label different projection neuron subclasses as well as a homologous neuron subclass in human cortical slices. We also show how coupling enhancer viruses expressing recombinases to a newly generated transgenic mouse, Ai213, enables strong labeling of three different neuronal classes/subclasses in the brain of a single transgenic animal. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond.


Subject(s)
Brain/cytology , Neurons/classification , Neurons/cytology , Single-Cell Analysis/methods , Animals , Datasets as Topic , Dependovirus , Humans , Mice , Mice, Transgenic
8.
Neuron ; 51(6): 703-14, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16982417

ABSTRACT

Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid/metabolism , Cathepsin B/metabolism , Age Factors , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Cathepsin B/genetics , Cell Line, Tumor , Female , Humans , Hydrolysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron , Mutation/genetics , Neurites/metabolism , Neurites/pathology , Neurons/metabolism , Neurons/pathology , Peptide Fragments/metabolism , Peptide Fragments/ultrastructure , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology
9.
J Neurosci ; 29(7): 1977-86, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19228952

ABSTRACT

The accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognition Disorders/genetics , Neprilysin/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Down-Regulation/genetics , Gene Expression Regulation/genetics , Humans , Learning Disabilities/genetics , Learning Disabilities/metabolism , Learning Disabilities/physiopathology , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neprilysin/genetics , Polymers/metabolism
10.
J Clin Invest ; 116(11): 3060-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17080199

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive neurodegeneration and cerebral accumulation of the beta-amyloid peptide (Abeta), but it is unknown what makes neurons susceptible to degeneration. We report that the TGF-beta type II receptor (TbetaRII) is mainly expressed by neurons, and that TbetaRII levels are reduced in human AD brain and correlate with pathological hallmarks of the disease. Reducing neuronal TGF-beta signaling in mice resulted in age-dependent neurodegeneration and promoted Abeta accumulation and dendritic loss in a mouse model of AD. In cultured cells, reduced TGF-beta signaling caused neuronal degeneration and resulted in increased levels of secreted Abeta and beta-secretase-cleaved soluble amyloid precursor protein. These results show that reduced neuronal TGF-beta signaling increases age-dependent neurodegeneration and AD-like disease in vivo. Increasing neuronal TGF-beta signaling may thus reduce neurodegeneration and be beneficial in AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism , Aging/physiology , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Cells, Cultured , Dendrites/metabolism , Dendrites/pathology , Gliosis/metabolism , Gliosis/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism
11.
J Neurosci ; 26(19): 5167-79, 2006 May 10.
Article in English | MEDLINE | ID: mdl-16687508

ABSTRACT

Alzheimer's disease (AD) is associated with accumulations of amyloid-beta (Abeta) peptides, oxidative damage, mitochondrial dysfunction, neurodegeneration, and dementia. The mitochondrial antioxidant manganese superoxide dismutase-2 (Sod2) might protect against these alterations. To test this hypothesis, we inactivated one Sod2 allele (Sod2(+/-)) in human amyloid precursor protein (hAPP) transgenic mice, reducing Sod2 activity to approximately 50% of that in Sod2 wild-type (Sod2(+/+)) mice. A reduction in Sod2 activity did not obviously impair mice without hAPP/Abeta expression. In hAPP mice, however, it accelerated the onset of behavioral alterations and of deficits in prepulse inhibition of acoustic startle, a measure of sensorimotor gating. In these mice, it also worsened hAPP/Abeta-dependent depletion of microtubule-associated protein 2, a marker of neuronal dendrites. Sod2 reduction decreased amyloid plaques in the brain parenchyma but promoted the development of cerebrovascular amyloidosis, gliosis, and plaque-independent neuritic dystrophy. Sod2 reduction also increased the DNA binding activity of the transcription factor nuclear factor kappaB. These results suggest that Sod2 protects the aging brain against hAPP/Abeta-induced impairments. Whereas reductions in Sod2 would be expected to trigger or exacerbate neuronal and vascular pathology in AD, increasing Sod2 activity might be of therapeutic benefit.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/metabolism , Mental Disorders/physiopathology , Mitochondria/enzymology , Receptors, Cell Surface/metabolism , Superoxide Dismutase/metabolism , Alzheimer Disease/complications , Amyloid beta-Protein Precursor/genetics , Animals , Enzyme Activation , Humans , Mental Disorders/etiology , Mice , Mice, Transgenic , Protease Nexins , Receptors, Cell Surface/genetics , Superoxide Dismutase/genetics
12.
PLoS One ; 7(1): e28033, 2012.
Article in English | MEDLINE | ID: mdl-22276093

ABSTRACT

While oxidative stress has been linked to Alzheimer's disease, the underlying pathophysiological relationship is unclear. To examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial antioxidant superoxide dismutase 2 (Sod2) allele in mutant human amyloid precursor protein (hAPP) transgenic mice. The brains of young (5-7 months of age) and old (25-30 months of age) mice with the four genotypes, wild-type (Sod2(+/+)), hemizygous Sod2 (Sod2(+/-)), hAPP/wild-type (Sod2(+/+)), and hAPP/hemizygous (Sod2(+/-)) were examined to assess levels of oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1. Sod2 reduction in young hAPP mice resulted in significantly increased oxidative stress in the pyramidal neurons of the hippocampus. Interestingly, while differences resulting from hAPP expression or Sod2 reduction were not apparent in the neurons in old mice, oxidative stress was increased in astrocytes in old, but not young hAPP mice with either Sod2(+/+) or Sod2(+/-). Our study shows the specific changes in oxidative stress and the causal relationship with the pathological progression of these mice. These results suggest that the early neuronal susceptibility to oxidative stress in the hAPP/Sod2(+/-) mice may contribute to the pathological and behavioral changes seen in this animal model.


Subject(s)
Mitochondria/enzymology , Oxidative Stress/physiology , Superoxide Dismutase/metabolism , Aldehydes/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Heme Oxygenase-1/metabolism , Humans , Mice , Mice, Transgenic , Mitochondria/metabolism , Oxidative Stress/genetics , Superoxide Dismutase/genetics
13.
Methods Mol Biol ; 670: 71-84, 2011.
Article in English | MEDLINE | ID: mdl-20967584

ABSTRACT

The accumulation of the amyloid-ß (Aß) peptide in the form of insoluble fibrillar deposits and soluble oligomeric aggregates is widely believed to play a causal role in Alzheimer's disease (AD). Proteolytic cleavage of APP by the ß-site APP cleaving enzyme (BACE1) near the C-terminus results in the formation of the APP C-terminal fragment (CTF) C99, a substrate for subsequent cleavage by γ-secretase to generate Aß. Alternatively, APP cleavage by α-secretase to generate the APP CTF C83 occurs within the Aß region, precluding its formation. Therefore, modulation of ß- and/or γ-secretase activity represents important therapeutic targets. Transgenic mice overexpressing human APP generate detectable levels of APP CTFs and Aß. We have shown that highly sensitive and specific methods for determining levels of APP CTFs and Aß are useful for understanding how genetic manipulation of APP processing impacts Aß generation and accumulation.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Blotting, Western , Humans , Mice , Mice, Transgenic
14.
J Biol Chem ; 280(38): 32957-67, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16027115

ABSTRACT

Amyloid-beta peptides (Abeta) are widely presumed to play a causal role in Alzheimer disease. Release of Abeta from the amyloid precursor protein (APP) requires proteolysis by the beta-site APP-cleaving enzyme (BACE1). Although increased BACE1 activity in Alzheimer disease brains and human (h) BACE1 transgenic (tg) mice results in altered APP cleavage, the contribution of these molecular alterations to neurodegeneration is unclear. We therefore used the murine Thy1 promoter to express high levels of hBACE1, with or without hAPP, in neurons of tg mice. Compared with hAPP mice, hBACE1/hAPP doubly tg mice had increased levels of APP C-terminal fragments (C89, C83) and decreased levels of full-length APP and Abeta. In contrast to non-tg controls and hAPP mice, hBACE1 mice and hBACE1/hAPP mice showed degeneration of neurons in the neocortex and hippocampus and degradation of myelin. Neurological deficits were also more severe in hBACE1 and hBACE1/hAPP mice than in hAPP mice. These results demonstrate that high levels of BACE1 activity are sufficient to elicit neurodegeneration and neurological decline in vivo. This pathogenic pathway involves the accumulation of APP C-terminal fragments but does not depend on increased production of human Abeta. Thus, inhibiting BACE1 may block not only Abeta-dependent but also Abeta-independent pathogenic mechanisms.


Subject(s)
Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Endopeptidases/metabolism , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor/chemistry , Animals , Aspartic Acid Endopeptidases , Blotting, Western , Brain/metabolism , Brain/ultrastructure , DNA, Complementary/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Middle Aged , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA/metabolism , RNA, Messenger/metabolism , Time Factors
15.
J Neurochem ; 91(6): 1260-74, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15584903

ABSTRACT

Most mutations in amyloid precursor proteins (APPs) linked to early onset familial Alzheimer's disease (FAD) increase the production of amyloid-beta peptides ending at residue 42 (Abeta42), which are released from APP by beta- and gamma-secretase cleavage. Stably transfected cells expressing wild-type human APP (APP(WT)) were more resistant to apoptosis-inducing treatments than cells expressing FAD-mutant human APP (APP(FAD)). Preventing Abeta42 production with an M596I mutation (beta-), which blocks beta-secretase cleavage of APP, or by treatment with a gamma-secretase inhibitor increased the resistance of APP(FAD)-expressing cells to apoptosis. Exposing hAPP(FAD/beta-) cells to exogenous Abeta42 or conditioned medium from Abeta42-producing APP(FAD) cells did not diminish their resistance to apoptosis. Preventing APP from entering the distal secretory pathway, where most Abeta peptides are generated, by retaining APP in the endoplasmic reticulum (ER)/intermediate compartment (IC) increased the resistance of APP(FAD)-expressing cells to apoptosis and did not alter the resistance of APP(WT)-expressing cells. p53-mediated gene transactivation after apoptosis-inducing treatments was much stronger in APP(FAD) cells than in hAPP(WT) or hAPP(FAD/beta-) cells. In contrast, upon induction of ER stress, cells expressing APP(FAD), hAPP(FAD/beta-), or APP(WT) had comparable levels of glucose-regulated protein-78 mRNA, an unfolded protein response indicator. We conclude that Abeta, especially intracellular Abeta, counteracts the antiapoptotic function of its precursor protein and predisposes cells to p53-mediated, and possibly other, proapoptotic pathways.


Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Intracellular Membranes/metabolism , Neuroblastoma/physiopathology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Protein Precursor/genetics , Apoptosis , Aspartic Acid Endopeptidases , Cell Line, Tumor , Cell Survival/radiation effects , Endopeptidases/metabolism , Endoplasmic Reticulum/metabolism , Extracellular Fluid/metabolism , Humans , Mutation , Neuroblastoma/pathology , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL