Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Rev Mol Cell Biol ; 25(4): 309-332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081975

ABSTRACT

The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.


Subject(s)
Chromatin , Histones , Humans , Histones/metabolism , Nucleosomes , Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , DNA , Adenosine Triphosphate/metabolism
2.
Cell ; 152(3): 453-66, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374342

ABSTRACT

There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.


Subject(s)
Alu Elements , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Nuclear Proteins/metabolism , Ribonucleoproteins/metabolism , Transcriptome , Evolution, Molecular , Exons , Gene Expression Profiling , Gene Knockdown Techniques , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunoprecipitation , RNA Splice Sites , Sequence Analysis, RNA , Splicing Factor U2AF
3.
Nature ; 589(7842): 462-467, 2021 01.
Article in English | MEDLINE | ID: mdl-33328628

ABSTRACT

Mechanical deformations of DNA such as bending are ubiquitous and have been implicated in diverse cellular functions1. However, the lack of high-throughput tools to measure the mechanical properties of DNA has limited our understanding of how DNA mechanics influence chromatin transactions across the genome. Here we develop 'loop-seq'-a high-throughput assay to measure the propensity for DNA looping-and determine the intrinsic cyclizabilities of 270,806 50-base-pair DNA fragments that span Saccharomyces cerevisiae chromosome V, other genomic regions, and random sequences. We found sequence-encoded regions of unusually low bendability within nucleosome-depleted regions upstream of transcription start sites (TSSs). Low bendability of linker DNA inhibits nucleosome sliding into the linker by the chromatin remodeller INO80, which explains how INO80 can define nucleosome-depleted regions in the absence of other factors2. Chromosome-wide, nucleosomes were characterized by high DNA bendability near dyads and low bendability near linkers. This contrast increases for deeper gene-body nucleosomes but disappears after random substitution of synonymous codons, which suggests that the evolution of codon choice has been influenced by DNA mechanics around gene-body nucleosomes. Furthermore, we show that local DNA mechanics affect transcription through TSS-proximal nucleosomes. Overall, this genome-scale map of DNA mechanics indicates a 'mechanical code' with broad functional implications.


Subject(s)
Biomechanical Phenomena , DNA, Fungal/chemistry , DNA, Fungal/genetics , Genome, Fungal , Saccharomyces cerevisiae/genetics , Chromatin Assembly and Disassembly , Codon/genetics , DNA, Fungal/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Pliability , Saccharomyces cerevisiae Proteins/metabolism , Transcription Initiation Site
4.
Mol Cell ; 68(5): 860-871.e7, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29220653

ABSTRACT

DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.


Subject(s)
Chromatin Assembly and Disassembly , DNA Damage , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Neoplasms/enzymology , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Allosteric Regulation , Binding Sites , Cell Line, Tumor , DNA Helicases/chemistry , DNA Helicases/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Enzyme Activation , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology , Nucleic Acid Conformation , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/genetics , Poly ADP Ribosylation , Poly Adenosine Diphosphate Ribose/chemistry , Protein Binding , Structure-Activity Relationship , Time Factors
5.
Nature ; 556(7701): 386-390, 2018 04.
Article in English | MEDLINE | ID: mdl-29643509

ABSTRACT

In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers1-3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and -1 nucleosomes at promoter DNA5-8. The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA+ ATPase heterohexamer is an assembly scaffold for the complex and acts as a 'stator' for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location -6, unwraps approximately 15 base pairs, disrupts the H2A-DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations -2 and -3 to act as a counter grip for the motor, on the other side of the H2A-H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A-H2B near the 'acidic patch'. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A-H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A-H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange.


Subject(s)
Adenosine Triphosphate/metabolism , Chaetomium/enzymology , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , DNA Helicases/ultrastructure , Multiprotein Complexes/ultrastructure , Nucleosomes/metabolism , Amino Acid Sequence , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA/chemistry , DNA/metabolism , DNA/ultrastructure , DNA Helicases/chemistry , DNA Helicases/metabolism , Fungal Proteins , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship
6.
Mol Cell ; 60(5): 742-754, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26626479

ABSTRACT

Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy based on synthetic lethality. However, the mechanism underlying PARP-1's function remained obscure; inherent dynamics of SSBs and PARP-1's multi-domain architecture hindered structural studies. Here we reveal the structural basis of SSB detection and how multi-domain folding underlies the allosteric switch that determines PARP-1's signaling response. Two flexibly linked N-terminal zinc fingers recognize the extreme deformability of SSBs and drive co-operative, stepwise self-assembly of remaining PARP-1 domains to control the activity of the C-terminal catalytic domain. Automodification in cis explains the subsequent release of monomeric PARP-1 from DNA, allowing repair and replication to proceed. Our results provide a molecular framework for understanding PARP inhibitor action and, more generally, allosteric control of dynamic, multi-domain proteins.


Subject(s)
DNA Breaks, Single-Stranded , DNA/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Catalytic Domain , Crystallography, X-Ray , DNA/chemistry , DNA Repair , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Nucleic Acid Conformation , Poly (ADP-Ribose) Polymerase-1 , Protein Folding , Zinc Fingers
7.
Mol Cell ; 46(6): 871-83, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22749400

ABSTRACT

Alternative inclusion of exons increases the functional diversity of proteins. Among alternatively spliced exons, tissue-specific exons play a critical role in maintaining tissue identity. This raises the question of how tissue-specific protein-coding exons influence protein function. Here we investigate the structural, functional, interaction, and evolutionary properties of constitutive, tissue-specific, and other alternative exons in human. We find that tissue-specific protein segments often contain disordered regions, are enriched in posttranslational modification sites, and frequently embed conserved binding motifs. Furthermore, genes containing tissue-specific exons tend to occupy central positions in interaction networks and display distinct interaction partners in the respective tissues, and are enriched in signaling, development, and disease genes. Based on these findings, we propose that tissue-specific inclusion of disordered segments that contain binding motifs rewires interaction networks and signaling pathways. In this way, tissue-specific splicing may contribute to functional versatility of proteins and increases the diversity of interaction networks across tissues.


Subject(s)
Protein Interaction Maps , Proteins/genetics , Proteins/metabolism , Alternative Splicing , Evolution, Molecular , Exons , Humans , Models, Biological , Organ Specificity , RNA Splicing , Structure-Activity Relationship
8.
Sci Adv ; 9(27): eadh2019, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37418517

ABSTRACT

Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.


Subject(s)
Transcription Factors, TFIII , Humans , Cryoelectron Microscopy , Transcription Factors, TFIII/genetics , Transcription, Genetic , DNA/metabolism , RNA, Transfer/genetics
9.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Article in English | MEDLINE | ID: mdl-37106137

ABSTRACT

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Subject(s)
Saccharomyces cerevisiae Proteins , TATA-Binding Protein Associated Factors , Adenosine Triphosphatases/metabolism , Transcription Factors/metabolism , TATA Box , TATA-Box Binding Protein/chemistry , Saccharomyces cerevisiae Proteins/metabolism , DNA/chemistry , Adenosine Triphosphate/metabolism , TATA-Binding Protein Associated Factors/chemistry
10.
Science ; 381(6655): 313-319, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37384673

ABSTRACT

Loss of H2A-H2B histone dimers is a hallmark of actively transcribed genes, but how the cellular machinery functions in the context of noncanonical nucleosomal particles remains largely elusive. In this work, we report the structural mechanism for adenosine 5'-triphosphate-dependent chromatin remodeling of hexasomes by the INO80 complex. We show how INO80 recognizes noncanonical DNA and histone features of hexasomes that emerge from the loss of H2A-H2B. A large structural rearrangement switches the catalytic core of INO80 into a distinct, spin-rotated mode of remodeling while its nuclear actin module remains tethered to long stretches of unwrapped linker DNA. Direct sensing of an exposed H3-H4 histone interface activates INO80, independently of the H2A-H2B acidic patch. Our findings reveal how the loss of H2A-H2B grants remodelers access to a different, yet unexplored layer of energy-driven chromatin regulation.


Subject(s)
Chaetomium , Chromatin Assembly and Disassembly , Chromatin , Histones , Nucleosomes , Chromatin/chemistry , DNA/chemistry , Histones/chemistry , Nucleosomes/chemistry , Cryoelectron Microscopy , Chaetomium/chemistry , Chaetomium/ultrastructure
11.
Nat Commun ; 13(1): 6569, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323657

ABSTRACT

Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity. A highly kinked DNA structure in complex with human PARP-1 domains led to the proposal that SSB sensing in Eukaryotes relies on dynamics of both the broken DNA double helix and PARP-1's multi-domain organization. Here, we directly probe this process at the single-molecule level. Quantitative smFRET and structural ensemble calculations reveal how PARP-1's N-terminal zinc fingers convert DNA SSBs from a largely unperturbed conformation, via an intermediate state into the highly kinked DNA conformation. Our data suggest an induced fit mechanism via a multi-domain assembly cascade that drives SSB sensing and stimulates an interplay with the scaffold protein XRCC1 orchestrating subsequent DNA repair events. Interestingly, a clinically used PARP-1 inhibitor Niraparib shifts the equilibrium towards the unkinked DNA conformation, whereas the inhibitor EB47 stabilizes the kinked state.


Subject(s)
DNA Breaks, Single-Stranded , Poly(ADP-ribose) Polymerase Inhibitors , Humans , X-ray Repair Cross Complementing Protein 1/metabolism , DNA Repair , DNA Damage , DNA/metabolism
12.
Science ; 376(6597): 1087-1094, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35653469

ABSTRACT

Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.


Subject(s)
Adenosine Triphosphatases , DNA-Binding Proteins , DNA , Multiprotein Complexes , Adenosine Triphosphatases/chemistry , Cryoelectron Microscopy , DNA/chemistry , DNA-Binding Proteins/chemistry , Multiprotein Complexes/chemistry , Nucleic Acid Conformation , Single Molecule Imaging
13.
Nat Commun ; 13(1): 5635, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163468

ABSTRACT

In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis.


Subject(s)
Spindle Apparatus , Tubulin , Microtubule-Associated Proteins/chemistry , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism
14.
Sci Adv ; 8(49): eadd3189, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36490333

ABSTRACT

The nucleosomal landscape of chromatin depends on the concerted action of chromatin remodelers. The INO80 remodeler specifically places nucleosomes at the boundary of gene regulatory elements, which is proposed to be the result of an ATP-dependent nucleosome sliding activity that is regulated by extranucleosomal DNA features. Here, we use cryo-electron microscopy and functional assays to reveal how INO80 binds and is regulated by extranucleosomal DNA. Structures of the regulatory A-module bound to DNA clarify the mechanism of linker DNA binding. The A-module is connected to the motor unit via an HSA/post-HSA lever element to chemomechanically couple the motor and linker DNA sensing. Two notable sites of curved DNA recognition by coordinated action of the four actin/actin-related proteins and the motor suggest how sliding by INO80 can be regulated by extranucleosomal DNA features. Last, the structures clarify the recruitment of YY1/Ies4 subunits and reveal deep architectural similarities between the regulatory modules of INO80 and SWI/SNF complexes.

15.
Nat Commun ; 13(1): 473, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35078983

ABSTRACT

The gamma-tubulin ring complex (γ-TuRC) is the principal microtubule nucleation template in vertebrates. Recent cryo-EM reconstructions visualized the intricate quaternary structure of the γ-TuRC, containing more than thirty subunits, raising fundamental questions about γ-TuRC assembly and the role of actin as an integral part of the complex. Here, we reveal the structural mechanism underlying modular γ-TuRC assembly and identify a functional role of actin in microtubule nucleation. During γ-TuRC assembly, a GCP6-stabilized core comprising GCP2-3-4-5-4-6 is expanded by stepwise recruitment, selective stabilization and conformational locking of four pre-formed GCP2-GCP3 units. Formation of the lumenal bridge specifies incorporation of the terminal GCP2-GCP3 unit and thereby leads to closure of the γ-TuRC ring in a left-handed spiral configuration. Actin incorporation into the complex is not relevant for γ-TuRC assembly and structural integrity, but determines γ-TuRC geometry and is required for efficient microtubule nucleation and mitotic chromosome alignment in vivo.


Subject(s)
Actins/chemistry , Cryoelectron Microscopy/methods , Microtubule-Associated Proteins/chemistry , Microtubule-Organizing Center/chemistry , Microtubules/chemistry , Tubulin/chemistry , Actins/metabolism , Cell Line , Humans , Microtubule-Associated Proteins/isolation & purification , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Tubulin/metabolism
16.
Open Biol ; 11(2): 200325, 2021 02.
Article in English | MEDLINE | ID: mdl-33529551

ABSTRACT

Cryo-electron microscopy recently resolved the structure of the vertebrate γ-tubulin ring complex (γ-TuRC) purified from Xenopus laevis egg extract and human cells to near-atomic resolution. These studies clarified the arrangement and stoichiometry of γ-TuRC components and revealed that one molecule of actin and the small protein MZT1 are embedded into the complex. Based on this structural census of γ-TuRC core components, we developed a recombinant expression system for the reconstitution and purification of human γ-TuRC from insect cells. The recombinant γ-TuRC recapitulates the structure of purified native γ-TuRC and has similar functional properties in terms of microtubule nucleation and minus end capping. This recombinant system is a central step towards deciphering the activation mechanisms of the γ-TuRC and the function of individual γ-TuRC core components.


Subject(s)
Tubulin/chemistry , Animals , Humans , Microtubules/chemistry , Microtubules/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , Single Molecule Imaging , Spodoptera , Swine , Tubulin/metabolism , Xenopus
17.
Nat Commun ; 12(1): 3232, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050140

ABSTRACT

Arrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the 'ruler' that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Drosophila Proteins/genetics , Drosophila Proteins/isolation & purification , Drosophila Proteins/metabolism , Drosophila melanogaster , Epigenesis, Genetic , Genome, Fungal/genetics , High Mobility Group Proteins/genetics , High Mobility Group Proteins/isolation & purification , High Mobility Group Proteins/metabolism , Histones/genetics , Histones/metabolism , Larva/genetics , Larva/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/isolation & purification , Microfilament Proteins/metabolism , Mutagenesis , Nucleosomes/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Whole Genome Sequencing
18.
Nat Commun ; 12(1): 3231, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050142

ABSTRACT

The fundamental molecular determinants by which ATP-dependent chromatin remodelers organize nucleosomes across eukaryotic genomes remain largely elusive. Here, chromatin reconstitutions on physiological, whole-genome templates reveal how remodelers read and translate genomic information into nucleosome positions. Using the yeast genome and the multi-subunit INO80 remodeler as a paradigm, we identify DNA shape/mechanics encoded signature motifs as sufficient for nucleosome positioning and distinct from known DNA sequence preferences of histones. INO80 processes such information through an allosteric interplay between its core- and Arp8-modules that probes mechanical properties of nucleosomal and linker DNA. At promoters, INO80 integrates this readout of DNA shape/mechanics with a readout of co-evolved sequence motifs via interaction with general regulatory factors bound to these motifs. Our findings establish a molecular mechanism for robust and yet adjustable +1 nucleosome positioning and, more generally, remodelers as information processing hubs that enable active organization and allosteric regulation of the first level of chromatin.


Subject(s)
Chromatin Assembly and Disassembly , Gene Expression Regulation , Histones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Allosteric Regulation/genetics , Animals , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Fungal/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genome, Fungal , Histones/genetics , Histones/isolation & purification , Humans , Larva/genetics , Larva/metabolism , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification
19.
Curr Opin Struct Biol ; 64: 134-144, 2020 10.
Article in English | MEDLINE | ID: mdl-32771531

ABSTRACT

ATP-dependent chromatin remodelers are enigmatic macromolecular machines that govern the arrangement and composition of nucleosomes across eukaryotic genomes. Here, we review the recent breakthrough provided by cryo-electron microscopy that reveal the first high-resolution insights into all four families of remodelers. We highlight the emerging structural and mechanistic principles with a particular focus on multi-subunit SWI/SNF and INO80/SWR1 complexes. A conserved architecture comprising a motor, rotor, stator and grip suggests a unifying mechanism for how stepwise DNA translocation enables large scale reconfigurations of nucleosomes. A molecular circuitry involving the nuclear actin containing module establishes a framework for understanding allosteric regulation. Remodelers emerge as programable hubs that enable differential processing of genetic and epigenetic information in response to the physiological state of a cell.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , Cryoelectron Microscopy , DNA , Nucleosomes
20.
Structure ; 28(1): 83-95.e5, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31740028

ABSTRACT

Tel1 (ATM in humans) is a large kinase that resides in the cell in an autoinhibited dimeric state and upon activation orchestrates the cellular response to DNA damage. We report the structure of an endogenous Tel1 dimer from Chaetomium thermophilum. Major parts are at 2.8 Å resolution, including the kinase active site with ATPγS bound, and two different N-terminal solenoid conformations are at 3.4 Å and 3.6 Å, providing a side-chain model for 90% of the Tel1 polypeptide. We show that the N-terminal solenoid has DNA binding activity, but that its movements are not coupled to kinase activation. Although ATPγS and catalytic residues are poised for catalysis, the kinase resides in an autoinhibited state. The PIKK regulatory domain acts as a pseudo-substrate, blocking direct access to the site of catalysis. The structure allows mapping of human cancer mutations and defines mechanisms of autoinhibition at near-atomic resolution.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Ataxia Telangiectasia Mutated Proteins/chemistry , Ataxia Telangiectasia Mutated Proteins/metabolism , Chaetomium/enzymology , Adenosine Triphosphate/metabolism , Catalytic Domain , Chaetomium/chemistry , DNA/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Homeostasis , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL