Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 531(7595): 493-5, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27008968

ABSTRACT

African dust emission and transport exhibits variability on diurnal to decadal timescales and is known to influence processes such as Amazon productivity, Atlantic climate modes, regional atmospheric composition and radiative balance and precipitation in the Sahel. To elucidate the role of African dust in the climate system, it is necessary to understand the factors governing its emission and transport. However, African dust is correlated with seemingly disparate atmospheric phenomena, including the El Niño/Southern Oscillation, the North Atlantic Oscillation, the meridional position of the intertropical convergence zone, Sahelian rainfall and surface temperatures over the Sahara Desert, all of which obfuscate the connection between dust and climate. Here we show that the surface wind field responsible for most of the variability in North African dust emission reflects the topography of the Sahara, owing to orographic acceleration of the surface flow. As such, the correlations between dust and various climate phenomena probably arise from the projection of the winds associated with these phenomena onto an orographically controlled pattern of wind variability. A 161-year time series of dust from 1851 to 2011, created by projecting this wind field pattern onto surface winds from a historical reanalysis, suggests that the highest concentrations of dust occurred from the 1910s to the 1940s and the 1970s to the 1980s, and that there have been three periods of persistent anomalously low dust concentrations--in the 1860s, 1950s and 2000s. Projections of the wind pattern onto climate models give a statistically significant downward trend in African dust emission and transport as greenhouse gas concentrations increase over the twenty-first century, potentially associated with a slow-down of the tropical circulation. Such a dust feedback, which is not represented in climate models, may be of benefit to human and ecosystem health in West Africa via improved air quality and increased rainfall. This feedback may also enhance warming of the tropical North Atlantic, which would make the basin more suitable for hurricane formation and growth.


Subject(s)
Climate , Dust/analysis , Wind , Africa , Atmosphere/chemistry , Cyclonic Storms , Desert Climate , Ecosystem , Feedback , Greenhouse Effect , Humans , Models, Theoretical , Rain
2.
Nature ; 536(7614): 72-5, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27398619

ABSTRACT

Clouds substantially affect Earth's energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts. Here we show that several independent, empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. These results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.

3.
Geophys Res Lett ; 47(22): e2020GL089711, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33281243

ABSTRACT

African dust exhibits strong variability on a range of time scales. Here we show that the interhemispheric contrast in Atlantic SST (ICAS) drives African dust variability at decadal to millennial timescales, and the strong anthropogenic increase of the ICAS in the future will decrease African dust loading to a level never seen during the Holocene. We provide a physical framework to understand the relationship between the ICAS and African dust activity: positive ICAS anomalies push the Intertropical Convergence Zone (ITCZ) northward and decrease surface wind speed over African dust source regions, which reduces dust emission and transport. It provides a unified framework for and is consistent with relationships in the literature. We find strong observational and proxy-record support for the ICAS-ITCZ-dust relationship during the past 160 and 17,000 years. Model-projected anthropogenic increase of the ICAS will reduce African dust by as much as 60%, which has broad consequences.

4.
Nature ; 479(7371): 94-7, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22051678

ABSTRACT

Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.


Subject(s)
Aerosols/analysis , Atmosphere/chemistry , Cyclonic Storms/statistics & numerical data , Soot/analysis , Tropical Climate , Aerosols/chemistry , Air Pollution/adverse effects , Air Pollution/analysis , Arabia , Disasters/statistics & numerical data , Hot Temperature , Human Activities , Humans , Oceans and Seas , Seasons , Wind
5.
Nature ; 484(7393): 170-1, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22495313
6.
Article in English | MEDLINE | ID: mdl-35457613

ABSTRACT

Mineral dust is one of the largest natural constituents of coarse particulate matter (PM10). Most of these dust emissions originate from northern Africa, and several hundred tera-grams of dust are emitted annually from this region. Previous evidence has linked dust PM10 to adverse respiratory outcomes in children. However, most of these studies have been from high-income countries (HICs) or examined dust from other regions of the world, mainly Asia. Evidence from low-to-middle-income countries (LMICs) in Africa is scarce. Respiratory infections are one of the leading causes of under-five mortality across the globe. However, there is a poignant disparity in studies examining these outcomes in children in the region where most dust is emitted. This study linked remotely sensed satellite data to a nationally representative survey to examine acute exposure to dust in children living in Benin using a time-stratified case-crossover analysis. We identified acute effects of exposure to dust and increased risk of cough in children under five. The effect of increased risk is strongest within two weeks of exposure and dissipates by four weeks. Children living in rural areas and households with lower income had a greater risk of adverse respiratory outcomes when exposed to dust. We could elucidate the specific period and conditions of increased risk for respiratory problems in children living in Benin.


Subject(s)
Air Pollutants , Dust , Air Pollutants/adverse effects , Air Pollutants/analysis , Benin , Child , Dust/analysis , Humans , Particulate Matter/analysis , Poverty
7.
Nat Commun ; 9(1): 241, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29339783

ABSTRACT

Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust-climate feedback is likely in the range of -0.04 to +0.02 Wm -2 K-1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust-climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia.

8.
Sci Adv ; 1(9): e1500646, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26601301

ABSTRACT

A large body of work has shown that year-to-year variations in North African dust emission are inversely proportional to previous-year monsoon rainfall in the Sahel, implying that African dust emission is highly sensitive to vegetation changes in this narrow transitional zone. However, such a theory is not supported by field observations or modeling studies, as both suggest that interannual variability in dust is due to changes in wind speeds over the major emitting regions, which lie to the north of the Sahelian vegetated zone. We reconcile this contradiction showing that interannual variability in Sahelian rainfall and surface wind speeds over the Sahara are the result of changes in lower tropospheric air temperatures over the Saharan heat low (SHL). As the SHL warms, an anomalous tropospheric circulation develops that reduces wind speeds over the Sahara and displaces the monsoonal rainfall northward, thus simultaneously increasing Sahelian rainfall and reducing dust emission from the major dust "hotspots" in the Sahara. Our results shed light on why climate models are, to date, unable to reproduce observed historical variability in dust emission and transport from this region.

9.
Science ; 324(5928): 778-81, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19325076

ABSTRACT

Observations and models show that northern tropical Atlantic surface temperatures are sensitive to regional changes in stratospheric volcanic and tropospheric mineral aerosols. However, it is unknown whether the temporal variability of these aerosols is a key factor in the evolution of ocean temperature anomalies. We used a simple physical model, incorporating 26 years of satellite data, to estimate the temperature response of the ocean mixed layer to changes in aerosol loadings. Our results suggest that the mixed layer's response to regional variability in aerosols accounts for 69% of the recent upward trend, and 67% of the detrended and 5-year low pass-filtered variance, in northern tropical Atlantic Ocean temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL