ABSTRACT
Objective: To implement complex, PINCER (pharmacist led information technology intervention) prescribing indicators, on a national scale with general practice data to describe the impact of the covid-19 pandemic on safe prescribing. Design: Population based, retrospective cohort study using federated analytics. Setting: Electronic general practice health record data from 56.8 million NHS patients by use of the OpenSAFELY platform, with the approval of the National Health Service (NHS) England. Participants: NHS patients (aged 18-120 years) who were alive and registered at a general practice that used TPP or EMIS computer systems and were recorded as at risk of at least one potentially hazardous PINCER indicator. Main outcome measure: Between 1 September 2019 and 1 September 2021, monthly trends and between practice variation for compliance with 13 PINCER indicators, as calculated on the first of every month, were reported. Prescriptions that do not adhere to these indicators are potentially hazardous and can cause gastrointestinal bleeds; are cautioned against in specific conditions (specifically heart failure, asthma, and chronic renal failure); or require blood test monitoring. The percentage for each indicator is formed of a numerator of patients deemed to be at risk of a potentially hazardous prescribing event and the denominator is of patients for which assessment of the indicator is clinically meaningful. Higher indicator percentages represent potentially poorer performance on medication safety. Results: The PINCER indicators were successfully implemented across general practice data for 56.8 million patient records from 6367 practices in OpenSAFELY. Hazardous prescribing remained largely unchanged during the covid-19 pandemic, with no evidence of increases in indicators of harm as captured by the PINCER indicators. The percentage of patients at risk of potentially hazardous prescribing, as defined by each PINCER indicator, at mean quarter 1 (Q1) 2020 (representing before the pandemic) ranged from 1.11% (age ≥65 years and non-steroidal anti-inflammatory drugs) to 36.20% (amiodarone and no thyroid function test), while Q1 2021 (representing after the pandemic) percentages ranged from 0.75% (age ≥65 years and non-steroidal anti-inflammatory drugs) to 39.23% (amiodarone and no thyroid function test). Transient delays occurred in blood test monitoring for some medications, particularly angiotensin-converting enzyme inhibitors (where blood monitoring worsened from a mean of 5.16% in Q1 2020 to 12.14% in Q1 2021, and began to recover in June 2021). All indicators substantially recovered by September 2021. We identified 1 813 058 patients (3.1%) at risk of at least one potentially hazardous prescribing event. Conclusion: NHS data from general practices can be analysed at national scale to generate insights into service delivery. Potentially hazardous prescribing was largely unaffected by the covid-19 pandemic in primary care health records in England.
ABSTRACT
BACKGROUND: Creating an ontology for COVID-19 surveillance should help ensure transparency and consistency. Ontologies formalize conceptualizations at either the domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was an extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. OBJECTIVE: This study aimed to develop an application ontology for COVID-19 that can be deployed across the various use-case domains of the RCGP RSC research and surveillance activities. METHODS: We described our domain-specific use case. The actor was the RCGP RSC sentinel network, the system was the course of the COVID-19 pandemic, and the outcomes were the spread and effect of mitigation measures. We used our established 3-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system-independent COVID-19 case identification algorithm. As there were no gold-standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association Primary Health Care Informatics working group and extended networks. RESULTS: Our use-case domains included primary care, public health, virology, clinical research, and clinical informatics. Our ontology supported (1) case identification, microbiological sampling, and health outcomes at an individual practice and at the national level; (2) feedback through a dashboard; (3) a national observatory; (4) regular updates for Public Health England; and (5) transformation of a sentinel network into a trial platform. We have identified a total of 19,115 people with a definite COVID-19 status, 5226 probable cases, and 74,293 people with possible COVID-19, within the RCGP RSC network (N=5,370,225). CONCLUSIONS: The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential.
Subject(s)
Biological Ontologies , COVID-19/epidemiology , Primary Health Care/methods , Sentinel Surveillance , Humans , PandemicsABSTRACT
OBJECTIVE: The aim of this study was to investigate the impact of a program of repeated assessments, feedback, and training on the quality of coded clinical data in general practice. DESIGN: A prospective uncontrolled intervention study was conducted in a general practice research network. MEASUREMENTS: Percentage of recorded consultations with a coded problem title and percentage of patients receiving a specific drug (e.g., tamoxifen) who had the relevant morbidity code (e.g., breast cancer) were calculated. Annual period prevalence of 12 selected morbidities was compared with parallel data derived from the fourth National Study of Morbidity Statistics from General Practice (MSGP4). RESULTS: The first two measures showed variation between practices at baseline, but on repeat assessments all practices improved or maintained their levels of coding. The period prevalence figures also were variable, but over time rates increased to levels comparable with, or above, MSGP4 rates. Practices were able to provide time and resources for feedback and training sessions. CONCLUSION: A program of repeated assessments, feedback, and training appears to improve data quality in a range of practices. The program is likely to be generalizable to other practices but needs a trained support team to implement it that has implications for cost and resources.