Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 43(4): 547-561, 2023 04.
Article in English | MEDLINE | ID: mdl-36794585

ABSTRACT

BACKGROUND: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction. METHODS: The effect of WSS on EVA1A expression was studied using porcine and mouse aortas and cultured human ECs exposed to flow. EVA1A was silenced in vitro in human ECs and in vivo in zebrafish using siRNA (small interfering RNA) and morpholinos, respectively. RESULTS: EVA1A was induced by proatherogenic DF at both mRNA and protein levels. EVA1A silencing resulted in decreased EC apoptosis, permeability, and expression of inflammatory markers under DF. Assessment of autophagic flux using the autolysosome inhibitor, bafilomycin coupled to the autophagy markers LC3-II (microtubule-associated protein 1 light chain 3-II) and p62, revealed that EVA1A knockdown promotes autophagy when ECs are exposed to DF, but not un-DF . Blocking autophagic flux led to increased EC apoptosis in EVA1A-knockdown cells exposed to DF, suggesting that autophagy mediates the effects of DF on EC dysfunction. Mechanistically, EVA1A expression was regulated by flow direction via TWIST1 (twist basic helix-loop-helix transcription factor 1). In vivo, knockdown of EVA1A orthologue in zebrafish resulted in reduced EC apoptosis, confirming the proapoptotic role of EVA1A in the endothelium. CONCLUSIONS: We identified EVA1A as a novel flow-sensitive gene that mediates the effects of proatherogenic DF on EC dysfunction by regulating autophagy.


Subject(s)
Atherosclerosis , Zebrafish , Animals , Humans , Mice , Apoptosis , Atherosclerosis/pathology , Autophagy , Endothelium/metabolism , Swine , Zebrafish/genetics
2.
Acta Pharmacol Sin ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886550

ABSTRACT

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

3.
Arterioscler Thromb Vasc Biol ; 41(8): 2237-2251, 2021 08.
Article in English | MEDLINE | ID: mdl-34107731

ABSTRACT

Fueled by the global surge in aging, atherosclerotic cardiovascular disease reached pandemic dimensions putting affected individuals at enhanced risk of myocardial infarction, stroke, and premature death. Atherosclerosis is a systemic disease driven by a wide spectrum of factors, including cholesterol, pressure, and disturbed flow. Although all arterial beds encounter a similar atherogenic milieu, the development of atheromatous lesions occurs discontinuously across the vascular system. Indeed, the internal mammary artery possesses unique biological properties that confer protection to intimal growth and atherosclerotic plaque formation, thus making it a conduit of choice for coronary artery bypass grafting. Its endothelium abundantly expresses nitric oxide synthase and shows accentuated nitric oxide release, while its vascular smooth muscle cells exhibit reduced tissue factor expression, high tPA (tissue-type plasminogen activator) production and blunted migration and proliferation, which may collectively mitigate intimal thickening and ultimately the evolution of atheromatous plaques. We aim here to provide insights into the anatomy, physiology, cellular, and molecular aspects of the internal mammary artery thereby elucidating its remarkable resistance to atherogenesis. We propose a change in perspective from risk to resilience to decipher mechanisms of atheroresistance and eventually identification of novel therapeutic targets presently not addressed by currently available remedies.


Subject(s)
Atherosclerosis/pathology , Coronary Artery Bypass , Coronary Artery Disease/surgery , Mammary Arteries/pathology , Mammary Arteries/transplantation , Plaque, Atherosclerotic , Vascular Remodeling , Animals , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Atherosclerosis/therapy , Coronary Artery Bypass/adverse effects , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Coronary Artery Disease/physiopathology , Health Services Needs and Demand , Humans , Mammary Arteries/metabolism , Mammary Arteries/physiopathology , Risk Assessment , Risk Factors , Treatment Outcome , Vascular Patency
4.
Perfusion ; 37(6): 582-589, 2022 09.
Article in English | MEDLINE | ID: mdl-33899586

ABSTRACT

Vascular endothelial cell stimulation is associated with the activation of different signalling pathways and transcription factors. Acute shear stress is known to induce different pro-inflammatory mediators such as IL-8. Nrf2 is activated by prolonged high shear stress promoting an antiinflammatory and athero-protective environment. However, little is known about the impact of acute shear stress on Nrf2 and Keap1 function and its role in IL-8 regulation. We aimed to examine Nrf2-Keap1 complex activation in-vitro and its role in regulating IL-8 transcripts under acute arterial shear stress (12 dyn/cm2) in venous endothelial cells (ECs). We note that acute high shear stress caused a significant upregulation of Nrf2 target genes, HO-1 and GCLM and an increased IL-8 upregulation at 90 and 120 minutes. Mechanistically, acute high shear did not affect Nrf2 nuclear translocation but resulted in reduced nuclear Keap1, suggesting that the reduction in nuclear Keap1 may result in increased free nuclear nrf2 to induce transcription. Consistently, the suppression of Keap1 using shRNA (shKeap1) resulted in significant upregulation of IL-8 transcripts in response to acute shear stress. Interestingly; the over expression of Nrf2 using Nrf2-Ad-WT or Sulforaphane was also associated with significant upregulation of IL-8 compared to controls. This study highlights the role of Keap1 in Nrf2 activation under shear stress and indicates that activation of Nrf2 may be deleterious in ECs in the context of acute haemodynamic injury.


Subject(s)
Endothelial Cells , NF-E2-Related Factor 2 , Endothelial Cells/metabolism , Humans , Interleukin-8/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Stress, Mechanical
5.
J Cell Sci ; 132(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-31076511

ABSTRACT

Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that ß1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. ß1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and ß1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that ß1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, ß1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Aorta/physiology , Integrin beta1/metabolism , Regional Blood Flow/physiology , Animals , Cell Line , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Integrin beta1/genetics , Mechanoreceptors/physiology , Mice , Mice, Knockout , Stress, Physiological/physiology
6.
Nature ; 515(7526): 279-282, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25119035

ABSTRACT

The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/physiology , Friction , Ion Channels/metabolism , Stress, Mechanical , Animals , Embryo, Mammalian/blood supply , Embryo, Mammalian/metabolism , Female , Hemorheology , Male , Mice
7.
Circ Res ; 119(3): 450-62, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27245171

ABSTRACT

RATIONALE: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.


Subject(s)
Atherosclerosis/metabolism , Blood Flow Velocity/physiology , Endothelium, Vascular/metabolism , Nuclear Proteins/biosynthesis , Twist-Related Protein 1/biosynthesis , Animals , Atherosclerosis/pathology , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Swine , Zebrafish
8.
Arterioscler Thromb Vasc Biol ; 37(11): 2087-2101, 2017 11.
Article in English | MEDLINE | ID: mdl-28882872

ABSTRACT

OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/metabolism , Mechanotransduction, Cellular , Plaque, Atherosclerotic , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Endopeptidases/metabolism , Endothelial Cells/pathology , Enzyme Induction , Female , Genetic Predisposition to Disease , Glycolysis , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/genetics , Inflammation/pathology , Inflammation Mediators/metabolism , Mice, Knockout , NF-kappa B/metabolism , Oxygen/metabolism , Phenotype , Protein Stability , Proteolysis , RNA Interference , Regional Blood Flow , Stress, Mechanical , Sus scrofa , Time Factors , Transfection , Ubiquitination , Up-Regulation
9.
Arterioscler Thromb Vasc Biol ; 37(1): 130-143, 2017 01.
Article in English | MEDLINE | ID: mdl-27834691

ABSTRACT

OBJECTIVE: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. APPROACH AND RESULTS: First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2-like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. CONCLUSIONS: We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.


Subject(s)
Apoptosis , Atherosclerosis/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Mechanotransduction, Cellular/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Cells, Cultured , Embryo, Nonmammalian/blood supply , Endothelial Cells/pathology , Female , Gene Expression Profiling/methods , Gene Knockdown Techniques , Gene Regulatory Networks , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Mice , Phenotype , RNA Interference , Regional Blood Flow , Stress, Mechanical , Swine , Transcriptome , Transfection , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
10.
FASEB J ; 29(5): 1869-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25667218

ABSTRACT

A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or ß-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.


Subject(s)
Aorta/transplantation , Carotid Arteries/surgery , Cysteine Endopeptidases/metabolism , GTPase-Activating Proteins/metabolism , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B/metabolism , Protein Aggregates/physiology , Adenoviridae/genetics , Allografts , Animals , Aorta/metabolism , Aorta/pathology , Blotting, Western , Carotid Arteries/metabolism , Carotid Arteries/pathology , Cell Proliferation , Cells, Cultured , Cysteine Endopeptidases/genetics , GTPase-Activating Proteins/genetics , Graft Rejection/etiology , Graft Rejection/metabolism , Graft Rejection/pathology , Histocompatibility , Humans , Immunity, Innate/immunology , Immunoenzyme Techniques , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NF-kappa B/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Tumor Necrosis Factor alpha-Induced Protein 3 , Ubiquitin/metabolism , Ubiquitination
11.
Eur Heart J ; 36(39): 2635-42, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26049157

ABSTRACT

Identification of subjects at increased risk for cardiovascular events plays a central role in the worldwide efforts to improve prevention, prediction, diagnosis, and prognosis of cardiovascular disease and to decrease the related costs. Despite their high predictive value on population level, traditional risk factors fail to fully predict individual risk. This position paper provides a summary of current vascular biomarkers other than the traditional risk factors with a special focus on the emerging -omics technologies. The definition of biomarkers and the identification and use of classical biomarkers are introduced, and we discuss the limitations of current biomarkers such as high sensitivity C-reactive protein (hsCRP) or N-terminal pro-brain natriuretic peptide (NT-proBNP). This is complemented by circulating plasma biomarkers, including high-density lipoprotein (HDL), and the conceptual shift from HDL cholesterol levels to HDL composition/function for cardiovascular risk assessment. Novel sources for plasma-derived markers include microparticles, microvesicles, and exosomes and their use for current omics-based analytics. Measurement of circulating micro-RNAs, short RNA sequences regulating gene expression, has attracted major interest in the search for novel biomarkers. Also, mass spectrometry and nuclear magnetic resonance spectroscopy have become key complementary technologies in the search for new biomarkers, such as proteomic searches or identification and quantification of small metabolites including lipids (metabolomics and lipidomics). In particular, pro-inflammatory lipid metabolites have gained much interest in the cardiovascular field. Our consensus statement concludes on leads and needs in biomarker research for the near future to improve individual cardiovascular risk prediction.


Subject(s)
Atherosclerosis/diagnosis , Biomarkers/blood , Cell-Derived Microparticles/metabolism , Chemistry Techniques, Analytical/trends , Consensus , Coronary Disease/diagnosis , Humans , Lipoproteins, HDL/blood , Metabolomics/trends , MicroRNAs/blood , Proteomics/trends , Risk Assessment/trends , Systems Biology/trends
12.
Neurobiol Dis ; 82: 593-606, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26311408

ABSTRACT

Late-onset dementia is a major health concern in the ageing population. Alzheimer's disease (AD) accounts for the largest proportion (65-70%) of dementia cases in the older population. Despite considerable research effort, the pathogenesis of late-onset AD remains unclear. Substantial evidence suggests that the neurodegenerative process is initiated by chronic cerebral hypoperfusion (CCH) caused by ageing and cardiovascular conditions. CCH causes reduced oxygen, glucose and other nutrient supply to the brain, with direct damage not only to the parenchymal cells, but also to the blood-brain barrier (BBB), a key mediator of cerebral homeostasis. BBB dysfunction mediates the indirect neurotoxic effects of CCH by promoting oxidative stress, inflammation, paracellular permeability, and dysregulation of nitric oxide, a key regulator of regional blood flow. As such, BBB dysfunction mediates a vicious circle in which cerebral perfusion is reduced further and the neurodegenerative process is accelerated. Endothelial interaction with pericytes and astrocytes could also play a role in the process. Reciprocal interactions between vascular dysfunction and neurodegeneration could further contribute to the development of the disease. A comprehensive overview of the complex scenario of interacting endothelium-mediated processes is currently lacking, and could prospectively contribute to the identification of adequate therapeutic interventions. This study reviews the current literature of in vitro and ex vivo studies on endothelium-mediated mechanisms underlying vascular dysfunction in AD pathogenesis, with the aim of presenting a comprehensive overview of the complex network of causative relationships. Particular emphasis is given to vicious circles which can accelerate the process of neurovascular degeneration.


Subject(s)
Alzheimer Disease/physiopathology , Blood-Brain Barrier/physiopathology , Cerebrovascular Circulation/physiology , Endothelium, Vascular/physiopathology , Animals , Humans
13.
Circ Res ; 112(12): 1583-91, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23564640

ABSTRACT

RATIONALE: Hypoxia followed by reoxygenation promotes inflammation by activating nuclear factor κB transcription factors in endothelial cells (ECs). This process involves modification of the signaling intermediary tumor necrosis factor receptor-associated factor 6 with polyubiquitin chains. Thus, cellular mechanisms that suppress tumor necrosis factor receptor-associated factor 6 ubiquitination are potential therapeutic targets to reduce inflammation in hypoxic tissues. OBJECTIVE: In this study, we tested the hypothesis that endothelial activation in response to hypoxia-reoxygenation can be influenced by Cezanne, a deubiquitinating enzyme that cleaves ubiquitin from specific modified proteins. METHODS AND RESULTS: Studies of cultured ECs demonstrated that hypoxia (1% oxygen) induced Cezanne via p38 mitogen-activated protein kinase-dependent transcriptional and post-transcriptional mechanisms. Hypoxia-reoxygenation had minimal effects on proinflammatory signaling in unmanipulated ECs but significantly enhanced Lys63 polyubiquitination of tumor necrosis factor receptor-associated factor 6, activation of nuclear factor κB, and expression of inflammatory genes after silencing of Cezanne. Thus, although hypoxia primed cells for inflammatory activation, it simultaneously induced Cezanne, which impeded signaling to nuclear factor κB by suppressing tumor necrosis factor receptor-associated factor 6 ubiquitination. Similarly, ischemia induced Cezanne in the murine kidney in vascular ECs, glomerular ECs, podocytes, and epithelial cells, and genetic deletion of Cezanne enhanced renal inflammation and injury in murine kidneys exposed to ischemia followed by reperfusion. CONCLUSIONS: We conclude that inflammatory responses to ischemia are controlled by a balance between ubiquitination and deubiquitination, and that Cezanne is a key regulator of this process. Our observations have important implications for therapeutic targeting of inflammation and injury during ischemia-reperfusion.


Subject(s)
Endopeptidases/metabolism , Endothelial Cells/enzymology , Inflammation/prevention & control , Kidney/blood supply , Reperfusion Injury/enzymology , TNF Receptor-Associated Factor 6/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , Endopeptidases/deficiency , Endopeptidases/genetics , Endothelial Cells/immunology , Humans , Inflammation/enzymology , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Oxygen/metabolism , RNA Interference , Rats , Rats, Inbred F344 , Reperfusion Injury/genetics , Reperfusion Injury/immunology , Signal Transduction , TNF Receptor-Associated Factor 6/genetics , Time Factors , Transcription, Genetic , Transfection , Ubiquitination , Up-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Arterioscler Thromb Vasc Biol ; 34(10): 2199-205, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24947523

ABSTRACT

Atherosclerosis is a chronic inflammatory disease of arteries that develops preferentially at branches and bends that are exposed to disturbed blood flow. Vascular function is modified by flow, in part, via the generation of mechanical forces that alter multiple physiological processes in endothelial cells. Shear stress has profound effects on vascular inflammation; high uniform shear stress prevents leukocyte recruitment to the vascular wall by reducing endothelial expression of adhesion molecules and other inflammatory proteins, whereas low oscillatory shear stress has the opposite effects. Here, we review the molecular mechanisms that underpin the effects of shear stress on endothelial inflammatory responses. They include shear stress regulation of inflammatory mitogen-activated protein kinase and nuclear factor-κB signaling. High shear suppresses these pathways through the induction of several negative regulators of inflammation, whereas low shear promotes inflammatory signaling. Furthermore, we summarize recent studies indicating that inflammatory signaling is highly sensitive to pulse wave frequencies, magnitude, and direction of flow. Finally, the importance of systems biology approaches (including omics studies and functional screening) to identify novel mechanosensitive pathways is discussed.


Subject(s)
Atherosclerosis/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Inflammation/pathology , Mechanotransduction, Cellular , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Gene Expression Regulation , Hemodynamics , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/physiopathology , Inflammation Mediators/metabolism , Regional Blood Flow , Stress, Mechanical
15.
Arterioscler Thromb Vasc Biol ; 34(5): 985-95, 2014 May.
Article in English | MEDLINE | ID: mdl-24651677

ABSTRACT

OBJECTIVE: Although atherosclerosis is associated with systemic risk factors such as age, high cholesterol, and obesity, plaque formation occurs predominately at branches and bends that are exposed to disturbed patterns of blood flow. The molecular mechanisms that link disturbed flow-generated mechanical forces with arterial injury are uncertain. To illuminate them, we investigated the effects of flow on endothelial cell (EC) senescence. APPROACH AND RESULTS: LDLR(-/-) (low-density lipoprotein receptor(-/-)) mice were exposed to a high-fat diet for 2 to 12 weeks (or to a normal chow diet as a control) before the assessment of cellular senescence in aortic ECs. En face staining revealed that senescence-associated ß-galactosidase activity and p53 expression were elevated in ECs at sites of disturbed flow in response to a high-fat diet. By contrast, ECs exposed to undisturbed flow did not express senescence-associated ß-galactosidase or p53. Studies of aortae from healthy pigs (aged 6 months) also revealed enhanced senescence-associated ß-galactosidase staining at sites of disturbed flow. These data suggest that senescent ECs accumulate at disturbed flow sites during atherogenesis. We used in vitro flow systems to examine whether a causal relationship exists between flow and EC senescence. Exposure of cultured ECs to flow (using either an orbital shaker or a syringe-pump flow bioreactor) revealed that disturbed flow promoted EC senescence compared with static conditions, whereas undisturbed flow reduced senescence. Gene silencing studies demonstrated that disturbed flow induced EC senescence via a p53-p21 signaling pathway. Disturbed flow-induced senescent ECs exhibited reduced migration compared with nonsenescent ECs in a scratch wound closure assay, and thus may be defective for arterial repair. However, pharmacological activation of sirtuin 1 (using resveratrol or SRT1720) protected ECs from disturbed flow-induced senescence. CONCLUSIONS: Disturbed flow promotes endothelial senescence via a p53-p21-dependent pathway which can be inhibited by activation of sirtuin 1. These observations support the principle that pharmacological activation of sirtuin 1 may promote cardiovascular health by suppressing EC senescence at atheroprone sites.


Subject(s)
Aortic Diseases/metabolism , Atherosclerosis/metabolism , Cellular Senescence , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Tumor Suppressor Protein p53/metabolism , Animals , Aortic Diseases/genetics , Aortic Diseases/pathology , Aortic Diseases/physiopathology , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Bioreactors , Cell Movement , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/pathology , Enzyme Activation , Enzyme Activators/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Mechanotransduction, Cellular/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Interference , Receptors, LDL/deficiency , Receptors, LDL/genetics , Regional Blood Flow , Sirtuin 1/metabolism , Stress, Mechanical , Swine , Time Factors , Transfection , Tumor Suppressor Protein p53/genetics , Wound Healing
16.
Eur Heart J ; 35(43): 3013-20, 3020a-3020d, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25230814

ABSTRACT

Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which develop at regions of arteries that are exposed to complex blood flow. In addition, plaque progression and eventually plaque rupture is influenced by a complex interaction between biological and mechanical factors-mechanical forces regulate the cellular and molecular composition of plaques and, conversely, the composition of plaques determines their ability to withstand mechanical load. A deeper understanding of these interactions is essential for designing new therapeutic strategies to prevent lesion development and promote plaque stabilization. Moreover, integrating clinical imaging techniques with finite element modelling techniques allows for detailed examination of local morphological and biomechanical characteristics of atherosclerotic lesions that may be of help in prediction of future events. In this ESC Position Paper on biomechanical factors in atherosclerosis, we summarize the current 'state of the art' on the interface between mechanical forces and atherosclerotic plaque biology and identify potential clinical applications and key questions for future research.


Subject(s)
Arteries/physiology , Atherosclerosis/physiopathology , Apoptosis/physiology , Biomarkers/metabolism , Biomechanical Phenomena/physiology , Cell Proliferation/physiology , Cellular Senescence/physiology , Disease Progression , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Homeostasis/physiology , Humans , Mechanoreceptors/physiology , Plaque, Atherosclerotic/physiopathology , Rupture, Spontaneous/physiopathology , Signal Transduction/physiology , Stress, Mechanical , Vascular Remodeling/physiology
17.
Mol Imaging ; 132014.
Article in English | MEDLINE | ID: mdl-24825602

ABSTRACT

Noninvasive imaging methods are required to monitor the inflammatory content of atherosclerotic plaques. FEDAA1106 (N-(5-fluoro-2-phenoxyphenyl)-N-(2-(2-fluoroethoxy)-5-methoxybenzyl) acetamide) is a selective ligand for TSPO-18kDa (also known as peripheral benzodiazepine receptor), which is expressed by activated macrophages. We compared 18F-FEDAA1106 and 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG, a marker of glucose metabolism) for positron emission tomographic (PET) imaging of vascular inflammation. This was tested using a murine model in which focal inflammation was induced in the carotid artery via placement of a constrictive cuff. Immunostaining revealed CD68-positive cells (macrophages) at a disturbed flow site located downstream from the cuff. Dynamic PET imaging using 18F-FEDAA1106 or 18F-FDG was registered to anatomic data generated by computed tomographic (CT)/CT angiography. Standardized uptake values were significantly increased at cuffed compared to contralateral arteries using either 18F-FEDAA1106 (p < .01) or FDG (p < .05). However, the 18F-FEDAA1106 signal was significantly higher at the inflamed disturbed flow region compared to the noninflamed uniform flow regions, whereas differences in FDG uptake were less distinct. We conclude that 18F-FEDAA1106 can be used in vivo for detection of vascular inflammation. Moreover, the signal pattern of 18F-FEDAA1106 corresponded with vascular inflammation more specifically than FDG uptake.


Subject(s)
Acetamides , Carotid Arteries/pathology , Fluorodeoxyglucose F18 , Plaque, Atherosclerotic/diagnosis , Radiopharmaceuticals , Acetamides/metabolism , Animals , Disease Models, Animal , Fluorodeoxyglucose F18/metabolism , Humans , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/metabolism
18.
Mol Cell Biochem ; 395(1-2): 167-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24934242

ABSTRACT

Myocardial ischemic stress and early reperfusion injury in patients undergoing coronary artery bypass grafting (CABG) operated on using intermittent cross-clamp fibrillation (ICCF) are not presently known. The role of mini-cardiopulmonary bypass (mCPB) versus conventional CPB (cCPB) during ICCF has not been investigated. These issues have been addressed as secondary objective of randomised controlled trial (ISRCTN30610605) comparing cCPB and mCPB. Twenty-six patients undergoing primary elective CABG using ICCF were randomised to either cCPB or mCPB. Paired left ventricular biopsies collected from 21 patients at the beginning and at the end of CPB were used to measure intracellular substrates (ATP and related compounds). Cardiac troponin T (cTnT) and CK-MB levels were measured in plasma collected from all patients preoperatively and after 1, 30, 60, 120, and 300 min after institution of CPB. ICCF was associated with significant ischemic stress as seen by fall in energy-rich phosphates early after reperfusion. There was also a fall in nicotinamide adenine dinucleotide (NAD(+)) indicating cardiomyocyte death which was confirmed by early release of cTnT and CK-MB during CPB. Ischemic stress and early myocardial injury were similar for cCPB and mCPB. However, the overall cardiac injury was significantly lower in the mCPB group as measured by cTnT (mean ± SEM: 96 ± 14 vs. 59 ± 8 µg/l, p = 0.02), but not with CK-MB. ICCF is associated with significant metabolic derangement and early myocardial injury. This early outcome was not affected by the CPB technique. However, the overall cardiac injury was lower for mCPB only when measured using cTnT.


Subject(s)
Cardiopulmonary Bypass/methods , Coronary Artery Bypass/adverse effects , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/etiology , Adenosine Triphosphate/metabolism , Aged , Cardiopulmonary Bypass/adverse effects , Coronary Artery Bypass/methods , Creatine Kinase/blood , Female , Humans , Male , Middle Aged , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Preoperative Care , Troponin C/blood
20.
Arterioscler Thromb Vasc Biol ; 33(6): 1257-63, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23559631

ABSTRACT

OBJECTIVE: Coarctation of the aorta is rarely associated with known gene defects. Blomstrand chondrodysplasia, caused by mutations in the parathyroid hormone receptor 1 (PTHR1) is associated with coarctation of the aorta in some cases, although it is unclear whether PTHR1 deficiency causes coarctation of the aorta directly. The zebrafish allows the study of vascular development using approaches not possible in other models. We therefore examined the effect of loss of function of PTHR1 or its ligand parathyroid hormone-related peptide (PTHrP) on aortic formation in zebrafish. APPROACH AND RESULTS: Morpholino antisense oligonucleotide knockdown of either PTHR1 or PTHrP led to a localized occlusion of the mid-aorta in developing zebrafish. Confocal imaging of transgenic embryos showed that these defects were caused by loss of endothelium, rather than failure to lumenize. Using a Notch reporter transgenic ([CSL:Venus]qmc61), we found both PTHR1 and PTHrP knockdown-induced defective Notch signaling in the hypochord at the site of the aortic defect before onset of circulation, and the aortic occlusion was rescued by inducible Notch upregulation. CONCLUSIONS: Loss of function of either PTHR1 or PTHrP leads to a localized aortic defect that is Notch dependent. These findings may underlie the aortic defect seen in Blomstrand chondrodysplasia, and reveal a link between parathyroid hormone and Notch signaling during aortic development.


Subject(s)
Aorta/embryology , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Receptor, Notch1/genetics , Receptor, Parathyroid Hormone, Type 1/genetics , Signal Transduction/genetics , Zebrafish Proteins/genetics , Animals , Aortic Coarctation/genetics , Aortic Coarctation/physiopathology , Female , Male , Models, Animal , Mutation/genetics , Neovascularization, Physiologic/genetics , Reference Values , Up-Regulation , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL