Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 34: 203-42, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26907216

ABSTRACT

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.


Subject(s)
Chemokines/immunology , Immune System , Infections/immunology , Inflammation/immunology , Lymphocytes/immunology , Lymphoid Tissue/immunology , Receptors, Chemokine/immunology , Animals , Cell Communication , Cell Movement , Humans , Lymphocyte Activation
2.
Nat Immunol ; 19(9): 1037, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29449629

ABSTRACT

In the version of this article initially published, a source of funding (Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.)) was not included in the Acknowledgments section. The correct statement is as follows: "Supported by Deutsche Forschungsgemeinschaft, (SFB900/B8 to C.K. and I.P.; and PR727/4-1 to I.P.), Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.) and the German Federal Ministry of Education and Research (01EO1302 to C.S.-F., C.K. and I.P.)." The error has been corrected in the HTML and PDF versions of the article.

3.
Nat Immunol ; 18(4): 393-401, 2017 04.
Article in English | MEDLINE | ID: mdl-28218745

ABSTRACT

To investigate how the human γδ T cell pool is shaped during ontogeny and how it is regenerated after transplantation of hematopoietic stem cells (HSCs), we applied an RNA-based next-generation sequencing approach to monitor the dynamics of the repertoires of γδ T cell antigen receptors (TCRs) before and after transplantation in a prospective cohort study. We found that repertoires of rearranged genes encoding γδ TCRs (TRG and TRD) in the peripheral blood of healthy adults were stable over time. Although a large fraction of human TRG repertoires consisted of public sequences, the TRD repertoires were private. In patients undergoing HSC transplantation, γδ T cells were quickly reconstituted; however, they had profoundly altered TCR repertoires. Notably, the clonal proliferation of individual virus-reactive γδ TCR sequences in patients with reactivation of cytomegalovirus revealed strong evidence for adaptive anti-viral γδ T cell immune responses.


Subject(s)
Clonal Evolution , Cytomegalovirus Infections/immunology , Hematopoietic Stem Cell Transplantation , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Clonal Evolution/genetics , Clonal Evolution/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Gene Rearrangement, T-Lymphocyte , Graft Survival , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Transplantation, Homologous
4.
Nat Immunol ; 15(7): 623-30, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24813163

ABSTRACT

Afferent lymph-borne dendritic cells essentially rely on the chemokine receptor CCR7 for their transition from the subcapsular lymph node sinus into the parenchyma, a migratory step driven by putative gradients of CCR7 ligands. We found that lymph node fringes indeed contained physiological gradients of the chemokine CCL21, which depended on the expression of CCRL1, the atypical receptor for the CCR7 ligands CCL19 and CCL21. Lymphatic endothelial cells lining the ceiling of the subcapsular sinus, but not those lining the floor, expressed CCRL1, which scavenged chemokines from the sinus lumen. This created chemokine gradients across the sinus floor and enabled the emigration of dendritic cells. In vitro live imaging revealed that spatially confined expression of CCRL1 was necessary and sufficient for the creation of functional chemokine gradients.


Subject(s)
Chemokine CCL21/physiology , Lymph Nodes/immunology , Receptors, CCR/physiology , Animals , Cell Movement , Dendritic Cells/physiology , Mice , Mice, Inbred C57BL
5.
Proc Natl Acad Sci U S A ; 120(25): e2219790120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307450

ABSTRACT

Dendritic cells (DCs) orchestrate immune responses by presenting antigenic peptides on major histocompatibility complex (MHC) molecules to T cells. Antigen processing and presentation via MHC I rely on the peptide-loading complex (PLC), a supramolecular machinery assembled around the transporter associated with antigen processing (TAP), which is the peptide transporter in the endoplasmic reticulum (ER) membrane. We studied antigen presentation in human DCs by isolating monocytes from blood and differentiating them into immature and mature DCs. We uncovered that during DC differentiation and maturation, additional proteins are recruited to the PLC, including B-cell receptor-associated protein 31 (BAP31), vesicle-associated membrane protein-associated protein A (VAPA), and extended synaptotagmin-1 (ESYT1). We demonstrated that these ER cargo export and contact site-tethering proteins colocalize with TAP and are within 40 nm proximity of the PLC, suggesting that the antigen processing machinery is located near ER exit- and membrane contact sites. While CRISPR/Cas9-mediated deletion of TAP and tapasin significantly reduced MHC I surface expression, single-gene deletions of the identified PLC interaction partners revealed a redundant role of BAP31, VAPA, and ESYT1 in MHC I antigen processing in DCs. These data highlight the dynamics and plasticity of PLC composition in DCs that previously was not recognized by the analysis of cell lines.


Subject(s)
Major Histocompatibility Complex , Peptides , Humans , Antigen Presentation , Dendritic Cells , Histocompatibility Antigens Class I , Synaptotagmins
6.
Immunol Rev ; 306(1): 137-163, 2022 03.
Article in English | MEDLINE | ID: mdl-34859450

ABSTRACT

Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Antigen Presentation , Humans , Immune Tolerance , T-Lymphocytes, Cytotoxic
7.
Immunity ; 44(1): 9-11, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26789916

ABSTRACT

Chemokine receptors are known to signal through heterotrimeric G proteins. In this issue, Hauser et al. (2016) report that inflammatory cues can induce tetramers of the chemokine receptor CCR7 that serve as scaffolds integrating G protein with Src kinase signaling.


Subject(s)
Chemotaxis/immunology , Inflammation/immunology , Leukocytes, Mononuclear/immunology , Receptors, CCR7/immunology , Signal Transduction/immunology , Humans
8.
Immunity ; 44(2): 233-45, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26872694

ABSTRACT

According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity.


Subject(s)
Herpesviridae Infections/immunology , Muromegalovirus/immunology , Perforin/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Calcium Signaling , Cell Communication , Cells, Cultured , Cytotoxicity, Immunologic , Humans , Immune Evasion , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence, Multiphoton , Perforin/genetics , T-Lymphocyte Subsets/virology , T-Lymphocytes, Cytotoxic/virology
9.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34162739

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) has emerged as the infectious agent causing the pandemic coronavirus disease 2019 (COVID-19) with dramatic consequences for global human health and economics. Previously, we reached clinical evaluation with our vector vaccine based on modified vaccinia virus Ankara (MVA) against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes an infection in humans similar to SARS and COVID-19. Here, we describe the construction and preclinical characterization of a recombinant MVA expressing full-length SARS-CoV-2 spike (S) protein (MVA-SARS-2-S). Genetic stability and growth characteristics of MVA-SARS-2-S, plus its robust expression of S protein as antigen, make it a suitable candidate vaccine for industrial-scale production. Vaccinated mice produced S-specific CD8+ T cells and serum antibodies binding to S protein that neutralized SARS-CoV-2. Prime-boost vaccination with MVA-SARS-2-S protected mice sensitized with a human ACE2-expressing adenovirus from SARS-CoV-2 infection. MVA-SARS-2-S is currently being investigated in a phase I clinical trial as aspirant for developing a safe and efficacious vaccine against COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 Vaccines/standards , Dose-Response Relationship, Immunologic , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccination , Vaccinia virus
10.
J Allergy Clin Immunol ; 151(6): 1525-1535.e4, 2023 06.
Article in English | MEDLINE | ID: mdl-36804993

ABSTRACT

BACKGROUND: The Asthma Severity Scoring System (ASSESS) quantifies asthma severity in adolescents and adults. Scale performance in children younger than 12 years is unknown. OBJECTIVE: To validate the ASSESS score in the All Age Asthma Cohort and explore its use in children younger than 12 years. METHODS: Scale properties, responsiveness, and known-group validity were assessed in 247 children (median age, 11 years; interquartile range, 8-13 years) and 206 adults (median age, 52 years; interquartile range, 43-63 years). RESULTS: Overall, measures of internal test consistency and test-retest reliability were similar to the original data of the Severe Asthma Research Program. Cronbach α was 0.59 in children aged 12 to 18 years and 0.73 in adults, reflecting the inclusion of multiple and not-always congruent dimensions to the ASSESS score, especially in children. Analysis of known-group validity confirmed the discriminatory power, because the ASSESS score was significantly worse in patients with poor asthma control, exacerbations, and increased salbutamol use. In children aged 6 to 11 years, test-retest reliability was inferior compared with that in adults and adolescents (Cronbach α, 0.27) mostly because of a less lung function impairment in children with asthma of this age group. Known-group validity, however, confirmed good discriminative power regarding severity-associated variables similar to adolescents and adults. CONCLUSIONS: Test-retest reliability and validity of the ASSESS score was confirmed in the All Age Asthma Cohort. In children aged 6 to 11 years, internal consistency was inferior compared with that in older patients with asthma; however, test validity was good and thus encourages age-spanning usage of the ASSESS score in all patients 6 years or older.


Subject(s)
Asthma , Child , Adult , Adolescent , Humans , Aged , Middle Aged , Reproducibility of Results , Surveys and Questionnaires , Asthma/diagnosis
11.
Eur J Immunol ; 52(2): 356-359, 2022 02.
Article in English | MEDLINE | ID: mdl-34870322

ABSTRACT

Sera of vaccines were assessed by surrogate virus neutralization tests for their capacity to neutralize the SARS-CoV-2 Delta variant. Homologous prime-boost immunization with Moderna's Spikevax as well as heterologous immunization with AstraZeneca's Vaxzevria followed by Moderna's Spikevax were identified as highly potent vaccination regimens for the induction of Delta-neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/blood , SARS-CoV-2/metabolism , Vaccination , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , SARS-CoV-2/immunology
12.
Nat Immunol ; 12(9): 879-87, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21841786

ABSTRACT

Little is known about the molecular mechanisms that determine the entry into the lymph node and intranodal positioning of lymph-derived cells. By injecting cells directly into afferent lymph vessels of popliteal lymph nodes, we demonstrate that lymph-derived T cells entered lymph-node parenchyma mainly from peripheral medullary sinuses, whereas dendritic cells (DCs) transmigrated through the floor of the subcapsular sinus on the afferent side. Transmigrating DCs induced local changes that allowed the concomitant entry of T cells at these sites. Signals mediated by the chemokine receptor CCR7 were absolutely required for the directional migration of both DCs and T cells into the T cell zone but were dispensable for the parenchymal entry of lymph-derived T cells and dendrite probing of DCs. Our findings provide insight into the molecular and structural requirements for the entry into lymph nodes and intranodal migration of lymph-derived cells of the immune system.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chemokines, CC/immunology , Dendritic Cells/immunology , Lymph Nodes/immunology , Receptors, CCR7/immunology , Transcellular Cell Migration/immunology , Transendothelial and Transepithelial Migration/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , Chemokines, CC/metabolism , Dendritic Cells/cytology , Flow Cytometry , Humans , Injections, Intralymphatic , Lymph/immunology , Lymph Nodes/cytology , Lymphatic Vessels/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Receptors, CCR7/deficiency , Receptors, CCR7/genetics
13.
Immunol Rev ; 289(1): 62-83, 2019 05.
Article in English | MEDLINE | ID: mdl-30977201

ABSTRACT

Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.


Subject(s)
Chemokines/metabolism , Lymph Nodes/physiology , Lymphocytes/immunology , Adaptive Immunity , Animals , Cell Movement , Cytokines/metabolism , Humans , Lymphocyte Activation , Organogenesis
14.
Proc Natl Acad Sci U S A ; 116(7): 2652-2661, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30692259

ABSTRACT

γδT cells are a major component of epithelial tissues and play a role in tissue homeostasis and host defense. γδT cells also reside in the gingiva, an oral tissue covered with specialized epithelium that continuously monitors the challenging dental biofilm. Whereas most research on intraepithelial γδT cells focuses on the skin and intestine epithelia, our knowledge on these cells in the gingiva is still incomplete. In this study, we demonstrate that even though the gingiva develops after birth, the majority of gingival γδT cells are fetal thymus-derived Vγ6+ cells, and to a lesser extent Vγ1+ and Vγ4+ cells. Furthermore, we show that γδT cells are motile and locate preferentially in the epithelium adjacent to the biofilm. Vγ6+ cells represent the major source of IL-17-producing cells in the gingiva. Chimeric mice and parabiosis experiments indicated that the main fraction of gingival γδT cells is radioresistant and tissue-resident, persisting locally independent of circulating γδT cells. Notably, gingival γδT cell homeostasis is regulated by the microbiota as the ratio of Vγ6+ and Vγ4+ cells was reversed in germ-free mice, and their activation state was decreased. As a consequence, conditional ablation of γδT cells results in elevated gingival inflammation and subsequent alterations of oral microbial diversity. Taken together, these findings suggest that oral mucosal homeostasis is shaped by reciprocal interplays between γδT cells and local microbiota.


Subject(s)
Homeostasis , Interleukin-17/biosynthesis , Microbiota , Mouth Mucosa/microbiology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism , Animals , Biofilms , Gingiva/immunology , Gingiva/microbiology , Inflammation/immunology , Mice
15.
Int J Mol Sci ; 23(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35163611

ABSTRACT

Adaptive T-cell immunotherapy holds great promise for the successful treatment of leukemia, as well as other types of cancers. More recently, it was also shown to be an effective treatment option for chronic virus infections in immunosuppressed patients. Autologous or allogeneic T cells used for immunotherapy are usually genetically modified to express novel T-cell or chimeric antigen receptors. The production of such cells was significantly simplified with the CRISPR/Cas system, allowing for the deletion or insertion of novel genes at specific locations within the genome. In this review, we describe recent methodological breakthroughs that were important for the conduction of these genetic modifications, summarize crucial points to be considered when conducting such experiments, and highlight the potential pitfalls of these approaches.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Immunotherapy , T-Lymphocytes , Humans
16.
Int J Mol Sci ; 23(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36142824

ABSTRACT

Donor lymphocyte infusion (DLI) can (re-)induce durable remission in relapsing patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). However, DLI harbors the risk of increased non-relapse mortality due to the co-occurrence of graft-versus-host disease (GVHD). GVHD onset may be caused or accompanied by changes in the clonal T-cell receptor (TCR) repertoire. To investigate this, we analyzed T cells in a cohort of 21 patients receiving DLI after alloHSCT. We performed deep T-cell receptor ß (TRB) sequencing of sorted CD4+CD25+CD127low regulatory T cells (Treg cells) and CD4+ conventional T cells (Tcon cells) in order to track longitudinal changes in the TCR repertoire. GVHD following DLI was associated with less diverse but clonally expanded CD4+CD25+CD127low Treg and CD4+ Tcon TCR repertoires, while patients without GVHD exhibited healthy-like repertoire properties. Moreover, the diversification of the repertoires upon GVHD treatment was linked to steroid-sensitive GVHD, whereas decreased diversity was observed in steroid-refractory GVHD. Finally, the unbiased sample analysis revealed that the healthy-like attributes of the CD4+CD25+CD127low Treg TCR repertoire were associated with reduced GVHD incidence. In conclusion, CD4+CD25+CD127low Treg and CD4+ Tcon TRB repertoire dynamics may provide a helpful real-time tool to improve the diagnosis and monitoring of treatment in GVHD following DLI.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Lymphocyte Transfusion/adverse effects , Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes, Regulatory
17.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Article in English | MEDLINE | ID: mdl-32805279

ABSTRACT

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Adult , Animals , Biopsy , Calgranulin A/administration & dosage , Calgranulin A/analysis , Calgranulin B/analysis , Calgranulin B/genetics , Child, Preschool , Colon/microbiology , Colon/pathology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Dysbiosis/microbiology , Dysbiosis/prevention & control , Enterocolitis, Necrotizing/epidemiology , Enterocolitis, Necrotizing/immunology , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Feces/chemistry , Feces/microbiology , Female , Follow-Up Studies , Gastrointestinal Microbiome/genetics , Humans , Immunity, Mucosal , Infant , Infant, Newborn , Infant, Premature/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Knockout , Obesity/epidemiology , Obesity/immunology , Obesity/microbiology , Obesity/prevention & control , RNA, Ribosomal, 16S/genetics , Sepsis/epidemiology , Sepsis/immunology , Sepsis/microbiology , Sepsis/prevention & control
18.
Immunity ; 37(1): 48-59, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22770884

ABSTRACT

γδ T cells are an important innate source of interleukin-17 (IL-17). In contrast to T helper 17 (Th17) cell differentiation, which occurs in the periphery, IL-17-producing γδ T cells (γδT17 cells) are probably committed during thymic development. To study when γδT17 cells arise during ontogeny, we used TcrdH2BeGFP reporter mice to monitor T cell receptor (TCR) rearrangement and IL-17 production in the embryonic thymus. We observed that several populations such as innate lymphoid cells and early T cell precursors were able to produce IL-17 prior to (and thus independent of) TCR recombination. γδT17 cells were absent after transplantation of IL-17-sufficient bone marrow into mice lacking both Il17a and Il17f. Also, γδT17 cells were not generated after genetic restoration of defective Rag1 function in adult mice. Together, these data suggested that these cells developed exclusively before birth and subsequently persisted in adult mice as self-renewing, long-lived cells.


Subject(s)
Interleukin-17/biosynthesis , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Bone Marrow/metabolism , Chimerism , Homeostasis/immunology , Immunity, Innate , Interleukin-17/deficiency , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, CCR6/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Thymus Gland/embryology , Thymus Gland/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
19.
PLoS Pathog ; 14(8): e1007252, 2018 08.
Article in English | MEDLINE | ID: mdl-30153311

ABSTRACT

Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many characteristics. Therefore infection of mice with MCMV is an important tool to understand immune responses and to design vaccines and therapies for patients at the risk of severe CMV disease. In this study, we investigated the immune response in the lungs following acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells. We found that the formation of NIFs was essential to reduce the number of infected cells in the lung tissue, showing that NIFs were sites of infection as well as sites of immune response. Comparing mice deficient for several leukocyte subsets, we identified T cells to be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to efficiently control virus spread. Additionally, we investigated the effects of perforin and interferon-gamma (IFNγ) on the virus infection and found important roles for both mechanisms. NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells. Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-dependent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs for early containment of a local MCMV infection at the single cell level.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD8-Positive T-Lymphocytes/physiology , Herpesviridae Infections/immunology , Interferon-gamma/metabolism , Muromegalovirus/immunology , Pneumonia/virology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , DNA-Binding Proteins/genetics , Herpesviridae Infections/complications , Herpesviridae Infections/pathology , Immunity, Cellular/physiology , Interferon-gamma/genetics , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/immunology , Pneumonia/pathology
20.
Blood ; 131(5): 533-545, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29233822

ABSTRACT

Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Mycobacterium Infections/prevention & control , Protective Agents , Receptors, Interferon/genetics , Animals , Cells, Cultured , Hematopoietic Stem Cell Transplantation/methods , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium avium , Protective Agents/metabolism , Protective Agents/therapeutic use , RAW 264.7 Cells , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL