Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Physiol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197088

ABSTRACT

Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1ß secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1ß were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.

2.
Eur J Nutr ; 63(4): 1257-1269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383813

ABSTRACT

PURPOSE: Today's diet consists of a substantial proportion of ultra-processed foods (UPF), especially in women with overweight and obesity in the reproductive period. High UPF intake results in an inadequate and unbalanced diet leading to derangements of several metabolic pathways detrimental to pregnancy and birth outcomes. Therefore, we aim to investigate whether UPF intake in the periconceptional period affects total homocysteine plasma levels (tHcy). METHODS: 1532 participants were included from the prospective Rotterdam Periconceptional Cohort. UPF intake was calculated using Food Frequency Questionnaires including items classified as 4 in the Nova classification, and tHcy was measured by using liquid chromatography-tandem mass spectrometry system, with an interassay coefficient of variation of < 5.5%. Multivariable linear regression modeling was used and adjusted for covariates and significant interaction terms. RESULTS: Women with overweight or obesity showed significantly higher percentage of UPF intake (respectively, 50.3 and 51.3%) and higher tHcy (respectively, 6.6 and 6.3 µmol/L, Kruskal-Wallis test; respectively, p < 0.001 and p = 0.04) compared to women with normal BMI (UPF intake: 46.8%, tHcy: 6.1 µmol/L). A 10% higher intake of UPF was associated with an increase in tHcy (adjusted: ß = 1.31, 95% CI = 0.38-2.23). Analysis stratified for BMI classification showed comparable associations in normal weight participants (adjusted: ß = 1.07, 95% CI = 0.06-2.07); however, no significant association in participants with overweight (adjusted: ß = 0.06, 95% CI = - 0.95-1.07) and obesity (adjusted: ß = 1.70, 95% CI = - 0.52-3.92) was shown. CONCLUSION: This study showed that a higher intake of UPF is associated with increased tHcy. Better knowledge and awareness of the nutritional quality of the diet in the periconceptional period may contribute to 1-CM and subsequently improve pregnancy course and outcome. TRIAL REGISTRATION NUMBER AND DATE: NTR4356, November 2010.


Subject(s)
Diet , Fast Foods , Homocysteine , Obesity , Overweight , Humans , Female , Homocysteine/blood , Adult , Prospective Studies , Overweight/blood , Pregnancy , Obesity/blood , Fast Foods/statistics & numerical data , Diet/methods , Diet/statistics & numerical data , Body Mass Index , Cohort Studies , Netherlands/epidemiology , Food, Processed
3.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Article in English | MEDLINE | ID: mdl-38579532

ABSTRACT

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Subject(s)
Apoptosis , Benzo(a)pyrene , Cell Survival , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Receptors, Aryl Hydrocarbon , Trophoblasts , Humans , Benzo(a)pyrene/toxicity , Placenta/drug effects , Placenta/cytology , Cell Line , Female , Pregnancy , Apoptosis/drug effects , Trophoblasts/drug effects , Trophoblasts/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Cell Survival/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Mitochondria/drug effects , Inflammation/chemically induced , Cell Hypoxia/drug effects , Membrane Potential, Mitochondrial/drug effects , Cytochrome P-450 Enzyme System/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
4.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39201761

ABSTRACT

Maternal obesity during pregnancy is associated with adverse pregnancy outcomes. This might be due to undesired obesity-induced changes in the maternal gut microbiota and related changes in the maternal immune adaptations during pregnancy. The current study examines how obesity affects gut microbiota and immunity in pregnant obese and lean mice during mid-pregnancy (gestational day 12 (GD12)). C57BL/6 mice were fed a high-fat diet or low-fat diet from 8 weeks before mating and during pregnancy. At GD12, we analyzed the gut microbiota composition in the feces and immune responses in the intestine (Peyer's patches, mesenteric lymph nodes) and the peripheral circulation (spleen and peripheral blood). Maternal obesity reduced beneficial bacteria (e.g., Bifidobacterium and Akkermansia) and changed intestinal and peripheral immune responses (e.g., dendritic cells, Th1/Th2/Th17/Treg axis, monocytes). Numerous correlations were found between obesity-associated bacterial genera and intestinal/peripheral immune anomalies. This study shows that maternal obesity impacts the abundance of specific bacterial gut genera as compared to lean mice and deranges maternal intestinal immune responses that subsequently change peripheral maternal immune responses in mid-pregnancy. Our findings underscore the opportunities for early intervention strategies targeting maternal obesity, ideally starting in the periconceptional period, to mitigate these obesity-related pregnancy effects.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Obesity , Animals , Female , Pregnancy , Gastrointestinal Microbiome/immunology , Mice , Diet, High-Fat/adverse effects , Obesity/immunology , Obesity/microbiology , Obesity/etiology , Obesity, Maternal/immunology
5.
Ecotoxicol Environ Saf ; 262: 115314, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37536008

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.

6.
Am J Obstet Gynecol ; 227(3): 392-400, 2022 09.
Article in English | MEDLINE | ID: mdl-35452650

ABSTRACT

A healthy diet before and during pregnancy is beneficial in acquiring essential B vitamins involved in 1-carbon metabolism, and in maintaining a healthy gut microbiota. Each play important roles in fetal development, immune-system remodeling, and pregnancy-nutrient acquisition. Evidence shows that there is a reciprocal interaction between the one-carbon metabolism and the gut microbiota given that dietary intake of B vitamins has been shown to influence the composition of the gut microbiota, and certain gut bacteria also synthesize B vitamins. This reciprocal interaction contributes to the individual's overall availability of B vitamins and, therefore, should be maintained in a healthy state during pregnancy. There is an emerging consensus that obese pregnant women often have derangements in 1-carbon metabolism and gut dysbiosis owing to high intake of nutritiously poor foods and a chronic systemic inflammatory state. For example, low folate and vitamin B12 in obese women coincide with the decreased presence of B vitamin-producing bacteria and increased presence of inflammatory-associated bacteria from approximately mid-pregnancy. These alterations are risk factors for adverse pregnancy outcomes, impaired fetal development, and disruption of fetal growth and microbiota formation, which may lead to potential long-term offspring metabolic and neurologic disorders. Therefore, preconceptional and pregnant obese women may benefit from dietary and lifestyle counseling to improve their dietary nutrient intake, and from monitoring their B vitamin levels and gut microbiome by blood tests and microbiota stool samples. In addition, there is evidence that some probiotic bacteria have folate biosynthetic capacity and could be used to treat gut dysbiosis. Thus, their use as an intervention strategy for obese women holds potential and should be further investigated. Currently, there are many knowledge gaps concerning the relationship between one-carbon metabolism and the gut microbiota, and future research should focus on intervention strategies to counteract B vitamin deficiencies and gut dysbiosis in obese pregnant women, commencing with the use of probiotic and prebiotic supplements.


Subject(s)
Gastrointestinal Microbiome , Obesity, Maternal , Vitamin B Complex , Carbon , Dysbiosis , Female , Fetal Development , Folic Acid , Humans , Obesity/metabolism , Pregnancy , Pregnancy Outcome , Vitamin B Complex/therapeutic use
7.
Crit Rev Food Sci Nutr ; 61(8): 1365-1393, 2021.
Article in English | MEDLINE | ID: mdl-32366110

ABSTRACT

Consumption of lactic acid bacteria (LAB) has been suggested to confer health-promoting effects on the host. However, effects of LABs have been reported to be species- and strain-specific and the mechanisms involved are subjects of discussion. Here, the possible mechanisms by which LABs induce antipathogenic, gut barrier enhancing and immune modulating effects in consumers are reviewed. Specific strains for which it has been proven that health is improved by these mechanisms are discussed. However, most strains probably act via several or combinations of mechanisms depending on which effector molecules they express. Current insight is that these effector molecules are either present on the cell wall of LAB or are excreted. These molecules are reviewed as well as the ligand binding receptors in the host. Also postbiotics are discussed. Finally, we provide an overview of the efficacy of LABs in combating infections caused by Helicobacter pylori, Salmonella, Escherichia coli, Streptococcus pneumoniae, and influenza virus, in controlling gut inflammatory diseases, in managing allergic disorders, and in alleviating cancer.


Subject(s)
Lactobacillales , Disease , Probiotics , Therapeutics
8.
Am J Obstet Gynecol ; 222(5): 497.e1-497.e12, 2020 05.
Article in English | MEDLINE | ID: mdl-31836544

ABSTRACT

BACKGROUND: Preeclampsia is a hypertensive pregnancy disorder in which generalized systemic inflammation and maternal endothelial dysfunction are involved in the pathophysiology. MiRNAs are small noncoding RNAs responsible for post-transcriptional regulation of gene expression and involved in many physiological processes. They mainly downregulate translation of their target genes. OBJECTIVE: We aimed to compare the plasma miRNA concentrations in preeclampsia, healthy pregnant women, and nonpregnant women. Furthermore, we aimed to evaluate the effect of 3 highly increased plasma miRNAs in preeclampsia on endothelial cell function in vitro. STUDY DESIGN: We compared 3391 (precursor) miRNA concentrations in plasma samples from early-onset preeclamptic women, gestational age-matched healthy pregnant women, and nonpregnant women using miRNA 3.1. arrays (Affymetrix) and validated our findings by real-time quantitative polymerase chain reaction. Subsequently, endothelial cells (human umbilical vein endothelial cells) were transfected with microRNA mimics (we choose the 3 miRNAs with the greatest fold change and lowest false-discovery rate in preeclampsia vs healthy pregnancy). After transfection, functional assays were performed to evaluate whether overexpression of the microRNAs in endothelial cells affected endothelial cell function in vitro. Functional assays were the wound-healing assay (which measures cell migration and proliferation), the proliferation assay, and the tube-formation assay (which assesses formation of endothelial cell tubes during the angiogenic process). To determine whether the miRNAs are able to decrease gene expression of certain genes, RNA was isolated from transfected endothelial cells and gene expression (by measuring RNA expression) was evaluated by gene expression microarray (Genechip Human Gene 2.1 ST arrays; Life Technologies). For the microarray, we used pooled samples, but the differently expressed genes in the microarray were validated by real-time quantitative polymerase chain reaction in individual samples. RESULTS: No significant differences (fold change <-1.2 or >1.2 with a false-discovery rate <0.05) were found in miRNA plasma concentrations between healthy pregnant and nonpregnant women. The plasma concentrations of 26 (precursor) miRNAs were different between preeclampsia and healthy pregnancy. The 3 miRNAs that were increased with the greatest fold change and lowest false-discovery rate in preeclampsia vs healthy pregnancy were miR-574-5p, miR-1972, and miR-4793-3p. Transfection of endothelial cells with these miRNAs in showed that miR-574-5p decreased (P<.05) the wound-healing capacity (ie, decreased endothelial cell migration and/or proliferation) and tended (P<.1) to decrease proliferation, miR-1972 decreased tube formation (P<.05), and also tended (P<.1) to decrease proliferation, and miR-4793-3p tended (P<.1) to decrease both the wound-healing capacity and tube formation in vitro. Gene expression analysis of transfected endothelial cells revealed that miR-574-5p tended (P<.1) to decrease the expression of the proliferation marker MKI67. CONCLUSION: We conclude that in the early-onset preeclampsia group in our study different concentrations of plasma miRNAs are present as compared with healthy pregnancy. Our results suggest that miR-574-5p and miR-1972 decrease the proliferation (probably via decreasing MKI67) and/or migration as well as the tube-formation capacity of endothelial cells. Therefore, these miRNAs may be antiangiogenic factors affecting endothelial cells in preeclampsia.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/blood , Pre-Eclampsia/blood , Adult , Cell Movement , Female , Gene Expression Profiling , Gestational Age , Humans , Pregnancy , Young Adult
9.
Crit Rev Food Sci Nutr ; 59(9): 1486-1497, 2019.
Article in English | MEDLINE | ID: mdl-29333864

ABSTRACT

Human milk (HM) is the golden standard for nutrition of newborn infants. Human milk oligosaccharides (HMOs) are abundantly present in HM and exert multiple beneficial functions, such as support of colonization of the gut microbiota, reduction of pathogenic infections and support of immune development. HMO-composition is during lactation continuously adapted by the mother to accommodate the needs of the neonate. Unfortunately, for many valid reasons not all neonates can be fed with HM and are either totally or partly fed with cow-milk derived infant formulas, which do not contain HMOs. These cow-milk formulas are supplemented with non-digestible carbohydrates (NDCs) that have functional effects similar to that of some HMOs, since production of synthetic HMOs is challenging and still very expensive. However, NDCs cannot substitute all HMO functions. More efficacious NDCs may be developed and customized for specific groups of neonates such as pre-matures and allergy prone infants. Here current knowledge of HMO functions in the neonate in view of possible replacement of HMOs by NDCs in infant formulas is reviewed. Furthermore, methods to expedite identification of suitable NDCs and structure/function relationships are reviewed as in vivo studies in babies are impossible.


Subject(s)
Infant Formula/chemistry , Intestines/physiology , Microbiota , Oligosaccharides/physiology , Humans , Infant , Infant, Newborn , Intestines/microbiology , Milk, Human
10.
Diabetologia ; 61(6): 1261-1272, 2018 06.
Article in English | MEDLINE | ID: mdl-29306997

ABSTRACT

Extracellular matrix (ECM) molecules are responsible for structural and biochemical support, as well as for regulation of molecular signalling and tissue repair in many organ structures, including the pancreas. In pancreatic islets, collagen type IV and VI, and laminins are the most abundant molecules, but other ECM molecules are also present. The ECM interacts with specific combinations of integrin α/ß heterodimers on islet cells and guides many cellular processes. More specifically, some ECM molecules are involved in beta cell survival, function and insulin production, while others can fine tune the susceptibility of islet cells to cytokines. Further, some ECM induce release of growth factors to facilitate tissue repair. During enzymatic isolation of islets for transplantation, the ECM is damaged, impacting islet function. However, restoration of the ECM in human islets (for example by adding ECM to the interior of immunoprotective capsules) has been shown to enhance islet function. Here, we provide current insight into the role of ECM molecules in islet function and discuss the clinical potential of ECM manipulation to enhance pancreatic islet function and survival.


Subject(s)
Extracellular Matrix/metabolism , Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Animals , Bioengineering , Collagen/chemistry , Cytokines/metabolism , Fibrin/chemistry , Fibronectins/metabolism , Glycosaminoglycans/chemistry , Humans , Insulin/metabolism , Insulin-Secreting Cells/transplantation , Laminin/metabolism , Mice
11.
Am J Physiol Renal Physiol ; 314(5): F873-F878, 2018 05 01.
Article in English | MEDLINE | ID: mdl-28592435

ABSTRACT

Several studies reported sex differences in aldosterone. It is unknown whether these differences are associated with differences in volume regulation. Therefore we studied both aldosterone and extracellular volume in men and women on different sodium intakes. In healthy normotensive men ( n = 18) and premenopausal women ( n = 18) we investigated plasma aldosterone, blood pressure, and extracellular volume (125I-iothalamate), during both low (target intake 50 mmol Na+/day) and high sodium intake (target intake 200 mmol Na+/day) in a crossover setup. Furthermore, we studied the adrenal response to angiotensin II infusion (0.3, 1.0, and 3.0 ng·kg-1·min-1 for 1 h) on both sodium intakes. Men had a significantly higher plasma aldosterone, extracellular volume, and systolic blood pressure than women during high sodium intake ( P < 0.05). During low sodium intake, extracellular volume and blood pressure were higher in men as well ( P < 0.05), whereas the difference in plasma aldosterone was no longer significant ( P = 0.252). The adrenal response to exogenous angiotensin II was significantly lower in men than in women on both sodium intakes. Constitutive sex differences in the regulation of aldosterone, characterized by a higher aldosterone and a lower adrenal response to exogenous angiotensin II infusion in men, are associated with a higher extracellular volume and blood pressure in men. These findings suggest that sex differences in the regulation of aldosterone contribute to differences in volume regulation between men and women.


Subject(s)
Aldosterone/blood , Body Water/metabolism , Fluid Shifts , Renin-Angiotensin System , Water-Electrolyte Balance , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Adult , Angiotensin II/administration & dosage , Blood Pressure , Cross-Over Studies , Diet, Sodium-Restricted , Female , Healthy Volunteers , Humans , Infusions, Intravenous , Male , Random Allocation , Sex Factors , Sodium, Dietary/administration & dosage , Sodium, Dietary/metabolism , Young Adult
12.
Ann Surg ; 266(1): 149-157, 2017 07.
Article in English | MEDLINE | ID: mdl-27429018

ABSTRACT

OBJECTIVE: We aim on developing a polymeric ectopic scaffold in a readily accessible site under the skin. SUMMARY BACKGROUND DATA: The liver as transplantation site for pancreatic islets is associated with significant loss of islets. Several extrahepatic sites were tested in experimental animals, but many have practical limitations in the clinical setting and do not have the benefit of easy accessibility. METHODS AND RESULTS: Functional survival of rat islets was tested during 7 days of culture in the presence of poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. Tissue responses were studied in vivo after subcutaneous implantation in rats. Culture on PEOT/PBT and polysulfone profoundly disturbed function of islets, and induced severe tissue responses in vivo. Modification of their hydrophilicity did not change the suitability of the polymers. PDLLCL was the only polymer that promoted functional survival of rat islets in vitro and was associated with minor tissue reactions after 28 days. Rat islets were transplanted in the PDLLCL scaffold in a diabetic rat model. Before islet seeding, the scaffold was allowed to engraft for 28 days to allow the tissue response to dampen and to allow blood vessel growth into the device. Islet transplantation into the scaffold resulted in normoglycemia within 3 days and for the duration of the study period of 16 weeks. CONCLUSIONS: In conclusion, we found that some polymers such as PEOT/PBT and polysulfone interfere with islet function. PDLLCL is a suitable polymer to create an artificial islet transplantation site under the skin and supports islet survival.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Islets of Langerhans Transplantation/methods , Polymers , Tissue Scaffolds , Animals , Biocompatible Materials , Cell Culture Techniques , Cell Survival , Polyesters , Polyethylene Glycols , Sulfones
13.
Am J Physiol Heart Circ Physiol ; 310(11): H1827-33, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27059075

ABSTRACT

Women with a history of preeclampsia have an increased risk for cardiovascular diseases later in life. Persistent vascular alterations in the postpartum period might contribute to this increased risk. The current study assessed arterial stiffness under low sodium (LS) and high sodium (HS) conditions in a well-characterized group of formerly early-onset preeclamptic (fPE) women and formerly pregnant (fHP) women. Eighteen fHP and 18 fPE women were studied at an average of 5 yr after pregnancy on 1 wk of LS (50 mmol Na(+)/day) and 1 wk of HS (200 mmol Na(+)/day) intake. Arterial stiffness was measured by pulse-wave analysis (aortic augmentation index, AIx) and carotid-femoral pulse-wave velocity (PWV). Circulating markers of the renin-angiotensin aldosterone system (RAAS), extracellular volume (ECV), nitric oxide (NO), and hydrogen sulfide (H2S) were measured in an effort to identify potential mechanistic elements underlying adaptation of arterial stiffness. AIx was significantly lower in fHP women on LS compared with HS while no difference in AIx was apparent in fPE women. PWV remained unchanged upon different sodium loads in either group. Comparable sodium-dependent changes in RAAS, ECV, and NO/H2S were observed in fHP and fPE women. fPE women have an impaired ability to adapt their arterial stiffness in response to changes in sodium intake, independently of blood pressure, RAAS, ECV, and NO/H2S status. The pathways involved in impaired adaptation of arterial stiffness, and its possible contribution to the increased long-term risk for cardiovascular diseases in fPE women, remain to be investigated.


Subject(s)
Adaptation, Physiological/physiology , Blood Pressure/physiology , Pre-Eclampsia/physiopathology , Sodium, Dietary , Vascular Stiffness/physiology , Adult , Cross-Over Studies , Female , Humans , Pregnancy , Risk Factors
14.
Am J Physiol Renal Physiol ; 308(8): F824-31, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25694481

ABSTRACT

Formerly preeclamptic women have an increased risk for developing end-stage renal disease, which has been attributed to altered renal hemodynamics and abnormalities in the renin-angiotensin-aldosterone system. Whether this is due to preeclampsia itself or to comorbid conditions is unknown. Renal hemodynamics and responsiveness to ANG II during low Na(+) intake (7 days, 50 mmol Na(+)/24 h) and high Na(+) (HS) intake (7 days, 200 mmol Na(+)/24 h) were studied in 18 healthy normotensive formerly early-onset preeclamptic women (fPE women) and 18 healthy control subjects (fHP women), all selected for absence of comorbidity. At the end of each diet, renal hemodynamics and blood pressure were measured before and during graded ANG II infusion. Both HS intake and former preeclampsia increased filtration fraction (FF) without an interaction between the two. FF was highest during HS intake in fPE women [0.31 ± 0.12 vs. 0.29 ± 0.11 in fHP women, generalized estimating equation analysis (body mass index corrected), P = 0.03]. The renal response to ANG II infusion was not different between groups. In conclusion, fPE women have a higher FF compared with fHP women. As this was observed in the absence of comorbidity, preeclampsia itself might exert long-term effects on renal hemodynamics. However, we cannot exclude the presence of prepregnancy alterations in renal function, which, in itself, lead to an increased risk for preeclampsia. In experimental studies, an elevated FF has been shown to play a pathogenic role in the development of hypertension and renal damage. Future studies, however, should evaluate whether the subtle differences in renal hemodynamics after preeclampsia contribute to the increased long-term renal risk after preeclampsia.


Subject(s)
Glomerular Filtration Rate , Hemodynamics , Kidney Failure, Chronic/etiology , Kidney/physiopathology , Pre-Eclampsia/physiopathology , Renin-Angiotensin System , Adult , Angiotensin II/administration & dosage , Blood Pressure , Comorbidity , Cross-Over Studies , Diet, Sodium-Restricted , Dose-Response Relationship, Drug , Female , Gestational Age , Glomerular Filtration Rate/drug effects , Hemodynamics/drug effects , Humans , Infusions, Intravenous , Kidney/drug effects , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/ethnology , Kidney Failure, Chronic/physiopathology , Netherlands/epidemiology , Pre-Eclampsia/diagnosis , Pre-Eclampsia/ethnology , Predictive Value of Tests , Pregnancy , Renal Plasma Flow, Effective , Renin-Angiotensin System/drug effects , Risk Factors , Sodium, Dietary/administration & dosage , White People
15.
J Am Soc Nephrol ; 25(4): 717-25, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24335973

ABSTRACT

Soluble fms-like tyrosine kinase 1 (sFlt1), a circulating antiangiogenic protein, is elevated in kidney diseases and contributes to the development of preeclampsia. Hydrogen sulfide is a vasorelaxant and proangiogenic gas with therapeutic potential in several diseases. Therefore, we evaluated the potential therapeutic effect and mechanisms of action of hydrogen sulfide in an animal model of sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis created by adenovirus-mediated overexpression of sFlt1 in Sprague-Dawley rats. We injected sFlt1-overexpressing animals intraperitoneally with the hydrogen sulfide-donor sodium hydrosulfide (NaHS) (50 µmol/kg, twice daily) or vehicle (n=7 per group). Treatment with NaHS for 8 days significantly reduced sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis. Measurement of plasma protein concentrations with ELISA revealed a reduction of free plasma sFlt1 and an increase of free plasma vascular endothelial growth factor (VEGF) after treatment with NaHS. Renal VEGF-A mRNA expression increased significantly with NaHS treatment. In vitro, NaHS was proangiogenic in an endothelial tube assay and attenuated the antiangiogenic effects of sFlt1. Stimulation of podocytes with NaHS resulted in both short-term VEGF release (120 minutes) and upregulation of VEGF-A mRNA levels (24 hours). Furthermore, pretreatment of mesenteric vessels with a VEGF receptor 2-neutralizing antibody significantly attenuated NaHS-induced vasodilation. These results suggest that hydrogen sulfide ameliorates sFlt1-induced hypertension, proteinuria, and glomerular endotheliosis in rats by increasing VEGF expression. Further studies are warranted to evaluate the role of hydrogen sulfide as a novel therapeutic agent for vascular disorders such as preeclampsia.


Subject(s)
Hydrogen Sulfide/pharmacology , Hypertension/drug therapy , Proteinuria/drug therapy , Vascular Endothelial Growth Factor A/physiology , Vascular Endothelial Growth Factor Receptor-1/physiology , Animals , Female , Kidney Glomerulus/drug effects , Podocytes/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation , Vascular Endothelial Growth Factor A/genetics , Vasodilation/drug effects
16.
Int J Cancer ; 134(2): 280-90, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23832872

ABSTRACT

Ovarian cancer is a difficult-to-treat cancer with a 5-year survival rate of only ∼45%, due to late diagnosis and therapy resistance. In need of new therapeutic approaches, induction of intercellular adhesion molecule (ICAM)-1 expression might be of interest, since the expression of ICAM-1 is lower in ovarian cancer cells compared with healthy ovarian cells and correlated with decreased tumorigenicity. Whereas ICAM-1 expression on tumor cells is of importance for attracting immune cells, ICAM-1 might also induce tumorigenicity and chemoresistance. In ovarian cancer, such a role of ICAM-1 is unclear. Here, we investigated whether ICAM-1 has a cell-biological role by bidirectional modulation of ICAM-1 expression using ICAM-targeting artificial transcription factors. For a panel of ovarian cancer cells, tumor growth and cisplatin sensitivity were evaluated. Induction of ICAM-1 expression (ranging from 3- to 228-fold on mRNA level and 1.7- to 108-fold on protein level) resulted in indications of decreased ovarian cancer cell growth and reduced cisplatin sensitivity. Repression ranged from 48 to 94% on mRNA level and 47 to 91% on protein level. This study shows that, next to its established immunogenic role, ICAM-1 affects cell biological behavior of ovarian cancer cells and, importantly, that reexpression by artificial transcription factors represents a powerful approach for functional validation of genes epigenetically silenced in cancer, such as ICAM-1.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Intercellular Adhesion Molecule-1/metabolism , Ovarian Neoplasms/prevention & control , Transcription Factors/metabolism , Blotting, Western , Cell Proliferation/drug effects , Chromatin Immunoprecipitation , Female , Flow Cytometry , Humans , Intercellular Adhesion Molecule-1/genetics , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
17.
J Nutr ; 144(7): 1002-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24790027

ABSTRACT

Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that ß2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether ß2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 ß2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by ß2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain ß2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain ß2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with ß2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells, confirming that ß2→1-fructans are specific ligands for TLR2. To conclude, ß2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of ß2→1-fructan-mediated health effects.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Colon/metabolism , Fructans/metabolism , Intestinal Mucosa/metabolism , Protective Agents/metabolism , Tight Junctions/metabolism , Toll-Like Receptor 2/agonists , Anti-Inflammatory Agents, Non-Steroidal/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antibodies, Blocking/pharmacology , Cell Line , Colon/drug effects , Colon/immunology , Diglycerides/pharmacology , Fructans/antagonists & inhibitors , Fructans/chemistry , Gastrointestinal Agents/antagonists & inhibitors , Gastrointestinal Agents/chemistry , Gastrointestinal Agents/metabolism , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Kidney/drug effects , Kidney/immunology , Kidney/metabolism , Ligands , Membrane Transport Modulators/antagonists & inhibitors , Membrane Transport Modulators/toxicity , Molecular Structure , NF-kappa B/agonists , NF-kappa B/metabolism , Oligopeptides/pharmacology , Prebiotics/analysis , Protective Agents/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/antagonists & inhibitors , Tetradecanoylphorbol Acetate/toxicity , Tight Junctions/drug effects , Tight Junctions/immunology , Toll-Like Receptor 2/antagonists & inhibitors , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transcription Factor AP-1/agonists , Transcription Factor AP-1/metabolism
18.
Toxicol Pathol ; 42(2): 339-44, 2014.
Article in English | MEDLINE | ID: mdl-23531795

ABSTRACT

This short review is derived from the peer-reviewed literature and the experience and case materials of the authors. Brief illustrated summaries are presented on the gross and histologic normal anatomy of rodent and macaque placentas, including typical organ weights, with comments on differences from the human placenta. Common incidental findings, background lesions, and induced toxic lesions are addressed, and a recommended strategy for pathologic evaluation of placentas is provided.


Subject(s)
Placenta/pathology , Animals , Female , Histocytochemistry , Humans , Pathology , Placenta/chemistry , Pregnancy , Toxicology
19.
Toxicol Pathol ; 42(2): 314-26, 2014.
Article in English | MEDLINE | ID: mdl-23548606

ABSTRACT

The immune system represents a key defense mechanism against potential pathogens and adverse non-self materials. During pregnancy, the placenta is the point of contact between the maternal organism and non-self proteins of the fetal allograft and hence undoubtedly fulfils immune functions. In the placenta bacteria, foreign (non-self) proteins and proteins that might be introduced in toxicological studies or by medication are barred from reaching the progeny, and the maternal immune system is primed for acceptance of non-maternal fetal protein. Both immunologic protection of the fetus and acceptance of the fetus by the mother require effective mechanisms to prevent an immunologic fetomaternal conflict and to keep both organisms in balance. This is why the placenta requires toxicological consideration in view of its immune organ function. The following articles deal with placenta immune-, control-, and tolerance mechanisms in view of both fetal and maternal aspects. Furthermore, models for experimental access to placental immune function are addressed and the pathological evaluation is elucidated. "The Placenta as an Immune Organ and Its Relevance in Toxicological Studies" was subject of a continuing education course at the 2012 Society of Toxicologic Pathology meeting held in Boston, MA.


Subject(s)
Macaca fascicularis , Models, Animal , Placenta/immunology , Placenta/metabolism , Animals , Female , Histocytochemistry , Immune Tolerance , Placenta/anatomy & histology , Pregnancy , Toxicology/methods
20.
Toxicol Pathol ; 42(2): 327-38, 2014.
Article in English | MEDLINE | ID: mdl-23531796

ABSTRACT

During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages.


Subject(s)
Placenta/immunology , Adaptive Immunity/immunology , Animals , Female , Humans , Immunity, Innate/immunology , Maternal-Fetal Exchange/immunology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL