ABSTRACT
Kidney cancer is among the top ten most common cancers to date. Within the kidney, renal cell carcinoma (RCC) is the most common solid lesion occurring. While various risk factors are suspected, including unhealthy lifestyle, age, and ethnicity, genetic mutations seem to be a key risk factor. In particular, mutations in the von Hippel-Lindau gene (Vhl) have attracted a lot of interest since this gene regulates the hypoxia inducible transcription factors HIF-1α and HIF-2α, which in turn drive the transcription of many genes that are important for renal cancer growth and progression, including genes involved in lipid metabolism and signaling. Recent data suggest that HIF-1/2 are themselves regulated by bioactive lipids which make the connection between lipids and renal cancer obvious. This review will summarize the effects and contributions of the different classes of bioactive lipids, including sphingolipids, glycosphingolipids, eicosanoids, free fatty acids, cannabinoids, and cholesterol to renal carcinoma progression. Novel pharmacological strategies interfering with lipid signaling to treat renal cancer will be highlighted.
Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Lipids , Von Hippel-Lindau Tumor Suppressor Protein/geneticsABSTRACT
Given the critical role that the immune system plays in a multitude of diseases, having a clear understanding of the pharmacology of the immune system is crucial to new drug discovery and development. Here we describe the International Union of Basic and Clinical Pharmacology (IUPHAR) Guide to Immunopharmacology (GtoImmuPdb), which connects expert-curated pharmacology with key immunological concepts and aims to put pharmacological data into the hands of immunologists. In the pursuit of new therapeutics, pharmacological databases are a vital resource to researchers through providing accurate information on the fundamental science underlying drug action. This extension to the existing IUPHAR/British Pharmacological Society Guide to Pharmacology supports research into the development of drugs targeted at modulating immune, inflammatory or infectious components of disease. To provide a deeper context for how the resource can support research we show data in GtoImmuPdb relating to a case study on the targeting of vascular inflammation.
Subject(s)
Databases, Pharmaceutical , Drug Development , Drug Discovery , Immune System/diagnostic imaging , Immunologic Factors/pharmacology , Allergy and Immunology/education , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Atherosclerosis/prevention & control , Humans , Immunologic Factors/therapeutic use , Inflammation Mediators/metabolism , International Cooperation , Molecular Targeted Therapy/methods , Pharmaceutical Research/education , Pharmacology, Clinical/education , Randomized Controlled Trials as Topic , Signal Transduction/drug effects , Signal Transduction/immunology , Societies, Scientific/organization & administration , Treatment OutcomeABSTRACT
Molecular genetic aberrations in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway are common in human cancers including glioblastoma, yet, novel therapeutic approaches targeting this pathway in glioblastoma have not been successful. We hypothesized that molecular profiling in combination with in vitro drug sensitivity testing allows to identify signatures associated with sensitivity or resistance to PI3K/mTOR pathway inhibition. We analyzed the molecular mechanisms determining sensitivity to PI3K/mTOR inhibition using gene silencing or pharmacological target inhibition and proliferation, clonogenicity, or spherogenicity as readouts, in human long-term glioma cell (LTC) lines and glioma-initiating cells (GIC). Cultured glioma cells were universally sensitive to growth inhibition induced by PQR309, a novel, dual pan-PI3K/mTOR antagonist. Cells exhibited profound growth arrest, but little apoptotic or necrotic cell death as confirmed by electron microscopy; yet, there was evidence of senescence. Cell lines with high basal levels of phosphorylated (active) AKT, low levels of phosphorylated (inactive) protein translation repressor eukaryotic initiation factor (eIF) 4E-binding protein 1 (p4E-BP1), and high levels of Ser9-phosphorylated (inactive) glycogen synthase kinase 3 beta (pGSK3ß) were more sensitive to PQR309. Accordingly, the activity of PQR309 was synergistically enhanced by AKT gene silencing or direct pharmacological AKT inhibition. In vivo studies confirmed the anti-glioma activity of PQR309 alone or in combination with AKT inhibition in the orthotopic LN-229 glioma xenograft model in nude mice. These data justify to explore combined targeted therapy approaches in glioblastoma that aim at down-regulating AKT function to enhance the therapeutic potential of dual PI3K/mTOR inhibitors.
Subject(s)
Drug Delivery Systems/methods , Gene Silencing/physiology , Glioblastoma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/pharmacology , Animals , Cell Cycle Proteins/pharmacology , Cell Line, Tumor , Drug Synergism , Female , Gene Silencing/drug effects , Humans , Mice , Mice, Nude , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Random Allocation , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays/methodsABSTRACT
The 10th jubilee conference (IPK2019) took place on September 15-19, 2019 in Warsaw, on the Ochota campus as the IUBMB Focused Meeting entitled "Inhibitors of Protein Kinases. Kinase inhibitors in target biology and disease".
Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinases , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Protein Kinases/metabolismABSTRACT
The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, www.guidetopharmacology.org) and its precursor IUPHAR-DB, have captured expert-curated interactions between targets and ligands from selected papers in pharmacology and drug discovery since 2003. This resource continues to be developed in conjunction with the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS). As previously described, our unique model of content selection and quality control is based on 96 target-class subcommittees comprising 512 scientists collaborating with in-house curators. This update describes content expansion, new features and interoperability improvements introduced in the 10 releases since August 2015. Our relationship matrix now describes â¼9000 ligands, â¼15 000 binding constants, â¼6000 papers and â¼1700 human proteins. As an important addition, we also introduce our newly funded project for the Guide to IMMUNOPHARMACOLOGY (GtoImmuPdb, www.guidetoimmunopharmacology.org). This has been 'forked' from the well-established GtoPdb data model and expanded into new types of data related to the immune system and inflammatory processes. This includes new ligands, targets, pathways, cell types and diseases for which we are recruiting new IUPHAR expert committees. Designed as an immunopharmacological gateway, it also has an emphasis on potential therapeutic interventions.
Subject(s)
Databases, Pharmaceutical , Immune System Phenomena/drug effects , Immune System/drug effects , Animals , Humans , Immune System Diseases/drug therapy , Ligands , Pharmacology , Proteins/drug effectsABSTRACT
Notch is a key oncogenic pathway in several human cancers and to date, no targeted treatment of Notch activated cancers is available to patients. Therapeutic targeting of Notch has been an unresolved challenge due to severe on-target dose limiting toxicities associated with pan-Notch inhibition by either γ-secretase inhibitors or receptor/ligand targeting MAbs. At Cellestia Biotech, we have identified novel series of small molecule inhibitors of the Notch transcription complex. These molecules act as pan-Notch inhibitors and do not cause toxicities commonly associated with first- and second-generation Notch inhibitors currently tested in the clinic, thus providing a novel and unique opportunity to address a high unmet medical need. Our lead molecule, CB-103 is currently being investigated in Phase-1 dose escalation in cancer patients. Cellestia Biothech is further expanding its medicinal chemistry activities advancing the development of novel molecules for targeting transcription factors in cancer as well as non-cancer indications.
Subject(s)
Neoplasms , Receptors, Notch , Amyloid Precursor Protein Secretases/metabolism , Humans , Neoplasms/drug therapy , Signal TransductionABSTRACT
The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway has been implicated as a cancer target. Big pharma players and small companies have been developing small molecule inhibitors of PI3K and/or mTOR since the 1990s. Although four inhibitors have been approved, many open questions regarding tolerability, patient selection, sensitivity markers, development of resistances, and toxicological challenges still need to be addressed. Besides clear oncological indications, PI3K and mTOR inhibitors have been suggested for treating a plethora of different diseases. In particular, genetically induced PI3K/mTOR pathway activation causes rare disorders, known as overgrowth syndromes, like PTEN (phosphatase and tensin homolog) hamartomas, tuberous sclerosis complex (TSC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-related overgrowth spectrum (PROS), and activated PI3-Kinase delta syndrome (PI3KCD, APDS). Some of those disorders likeTSC or hemimegalencephaly, which are one of the PROS disorders, also belong to a group of diseases called mTORopathies. This group of syndromes presents with additional neurological manifestations associated with epilepsy and other neuropsychiatric symptoms induced by neuronal mTOR pathway hyperactivation. While PI3K and mTOR inhibitors have been and still are intensively tested in oncology indications, their use in genetically defined syndromes and mTORopathies appear to be promising avenues for a pharmacological intervention.
Subject(s)
Neoplasms/drug therapy , Rare Diseases/drug therapy , Signal Transduction/drug effects , Small Molecule Libraries/therapeutic use , Animals , Humans , Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rare Diseases/metabolism , Small Molecule Libraries/pharmacology , TOR Serine-Threonine Kinases/metabolismABSTRACT
The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options.
Subject(s)
Databases, Pharmaceutical , Drug Discovery , Proteins/drug effects , Biological Ontologies , Disease , Genome, Human , Humans , Internet , Ligands , Patents as Topic , Phosphotransferases/antagonists & inhibitors , Proteins/geneticsABSTRACT
Breast cancer is one of the most common and devastating malignancies among women worldwide. Recent evidence suggests that malignant progression is also driven by processes involving the sphingolipid molecule sphingosine 1-phosphate (S1P) and its binding to cognate receptor subtypes on the cell surface. To investigate the effect of this interaction on the metastatic phenotype, we used the breast cancer cell line MDA-MB-231 and the sublines 4175 and 1833 derived from lung and bone metastases in nude mice, respectively. In both metastatic cell lines expression of the S1P3 receptor was strongly upregulated compared to the parental cells and correlated with higher S1P-induced intracellular calcium ([Ca2+]i), higher cyclooxygenase (COX)-2 and microsomal prostaglandin (PG) E2 synthase expression, and consequently with increased PGE2 synthesis. PGE2 synthesis was decreased by antagonists and siRNA against S1P3 and S1P2. Moreover, in parental MDA-MB-231 cells overexpression of S1P3 by cDNA transfection also increased PGE2 synthesis, but only after treatment with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, indicating reversible silencing of the COX-2 promoter. Functionally, the metastatic sublines showed enhanced migration and Matrigel invasion in adapted Boyden chamber assays, which further increased by S1P stimulation. This response was abrogated by either S1P3 antagonism, COX-2 inhibition or PGE2 receptor 2 (EP2) and 4 (EP4) antagonism, but not by S1P2 antagonism. Our data demonstrate that in breast cancer cells overexpression of S1P3 and its activation by S1P has pro-inflammatory and pro-metastatic potential by inducing COX-2 expression and PGE2 signaling via EP2 and EP4.
Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement , Dinoprostone/metabolism , Receptors, Lysosphingolipid/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Up-Regulation , Breast Neoplasms/genetics , Calcium/metabolism , Celecoxib/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lysophospholipids/pharmacology , Neoplasm Invasiveness , Neoplasm Metastasis , Prostaglandin-E Synthases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Lysosphingolipid/genetics , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/genetics , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Time Factors , Up-Regulation/drug effectsABSTRACT
Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.
Subject(s)
Allosteric Regulation/drug effects , Ligands , Terminology as Topic , Humans , Ion Channels/metabolism , Models, Chemical , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolismABSTRACT
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal-dominant forms of Parkinson's disease. LRRK2 is a modular, multidomain protein containing 2 enzymatic domains, including a kinase domain, as well as several protein-protein interaction domains, pointing to a role in cellular signaling. Although enormous efforts have been made, the exact pathophysiologic mechanisms of LRRK2 are still not completely known. In this study, we used a chemical genetics approach to identify LRRK2 substrates from mouse brain. This approach allows the identification of substrates of 1 particular kinase in a complex cellular environment. Several of the identified peptides are involved in the regulation of microtubule (MT) dynamics, including microtubule-associating protein (MAP)/microtubule affinity-regulating kinase 1 (MARK1). MARK1 is a serine/threonine kinase known to phosphorylate MT-binding proteins such as Tau, MAP2, and MAP4 at KXGS motifs leading to MT destabilization. In vitro kinase assays and metabolic-labeling experiments in living cells confirmed MARK1 as an LRRK2 substrate. Moreover, we also showed that LRRK2 and MARK1 are interacting in eukaryotic cells. Our findings contribute to the identification of physiologic LRRK2 substrates and point to a potential mechanism explaining the reported effects of LRRK2 on neurite morphology.
Subject(s)
Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Brain/metabolism , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Mice, Knockout , Microtubules/metabolism , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/deficiency , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate SpecificityABSTRACT
Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)-Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising in some patients. Using NMR and small-angle X-ray scattering, we have analyzed the solution conformations of apo Abelson tyrosine kinase (c-Abl) and c-Abl complexes with ATP-site and allosteric inhibitors. Binding of the ATP-site inhibitor imatinib leads to an unexpected open conformation of the multidomain SH3-SH2-kinase c-Abl core, whose relevance is confirmed by cellular assays on Bcr-Abl. The combination of imatinib with the allosteric inhibitor GNF-5 restores the closed, inactivated state. Our data provide detailed insights on the poorly understood combined effect of the two inhibitor types, which is able to overcome drug resistance.
Subject(s)
Benzamides/chemistry , Fusion Proteins, bcr-abl/chemistry , Models, Molecular , Multiprotein Complexes/chemistry , Piperazines/chemistry , Protein Conformation , Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , Pyrimidines/chemistry , Allosteric Regulation , Benzamides/metabolism , Carbon Isotopes/analysis , Escherichia coli , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate , Molecular Structure , Nitrogen Isotopes/analysis , Nuclear Magnetic Resonance, Biomolecular , Piperazines/metabolism , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrimidines/metabolism , Scattering, Small AngleABSTRACT
Deregulation of protein and lipid kinase activities leads to a variety of pathologies, ranging from cancer inflammatory diseases, diabetes, infectious diseases, and cardiovascular disorders. Protein kinases and lipid kinases represent, therefore, an important target for the pharmaceutical industry. In fact, approximately one-third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases. To date, 30 kinase inhibitors have been approved, which, with few exceptions, are mainly for oncological indications and directed against only a handful of protein and lipid kinases, leaving 70% of the kinome untapped. Despite these successes in kinase drug discovery, the development of kinase inhibitors with outstanding selectivity, identification and validation of driver kinase(s) in diseases, and the emerging problem of resistance to the inhibition of key target kinases remain major challenges. This minireview provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Subject(s)
Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Animals , Drug Discovery/methods , Humans , Neoplasms/metabolism , Protein Kinases/metabolismABSTRACT
To better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteomics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma cells. Our findings suggest that FGFR3 mediates hematopoietic transformation by activating RSK2 in a two-step fashion, promoting both the ERK-RSK2 interaction and subsequent phosphorylation of RSK2 by ERK.
Subject(s)
Cell Transformation, Neoplastic/metabolism , MAP Kinase Signaling System , Multiple Myeloma/enzymology , Receptor, Fibroblast Growth Factor, Type 3/physiology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Apoptosis , Binding Sites , Cell Line, Tumor , Cell Proliferation , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Multiple Myeloma/metabolism , Phosphorylation , RNA Interference , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Tyrosine/metabolismABSTRACT
Phosphatidylinositol-3-kinase α (PI3Kα) is a therapeutic target of high interest in anticancer drug research. On the basis of a binding model rationalizing the high selectivity and potency of a particular series of 2-aminothiazole compounds in inhibiting PI3Kα, a medicinal chemistry program has led to the discovery of the clinical candidate NVP-BYL719.
Subject(s)
Drug Discovery , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Animals , Biological Availability , Cell Line , Dogs , Dose-Response Relationship, Drug , Female , Humans , Mice , Models, Molecular , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistryABSTRACT
The Bcr-Abl tyrosine kinase oncogene causes chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). We describe a novel selective inhibitor of Bcr-Abl, AMN107 (IC50 <30 nM), which is significantly more potent than imatinib, and active against a number of imatinib-resistant Bcr-Abl mutants. Crystallographic analysis of Abl-AMN107 complexes provides a structural explanation for the differential activity of AMN107 and imatinib against imatinib-resistant Bcr-Abl. Consistent with its in vitro and pharmacokinetic profile, AMN107 prolonged survival of mice injected with Bcr-Abl-transformed hematopoietic cell lines or primary marrow cells, and prolonged survival in imatinib-resistant CML mouse models. AMN107 is a promising new inhibitor for the therapy of CML and Ph+ ALL.
Subject(s)
Antineoplastic Agents/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Benzamides , Bone Marrow Cells/cytology , Cell Line , Cell Line, Tumor , Cell Survival , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Hematopoietic Stem Cells/cytology , Imatinib Mesylate , Inhibitory Concentration 50 , Mice , Models, Biological , Models, Chemical , Mutation , Mycoplasma/metabolism , Phosphorylation , Piperazines/pharmacology , Retroviridae/genetics , Time FactorsABSTRACT
The Abl kinase inhibitor imatinib mesylate is the preferred treatment for Philadelphia chromosome-positive (Ph(+)) chronic myeloid leukemia (CML) in chronic phase but is much less effective in CML blast crisis or Ph(+) B-cell acute lymphoblastic leukemia (B-ALL). Here, we show that Bcr-Abl activated the Src kinases Lyn, Hck and Fgr in B-lymphoid cells. BCR-ABL1 retrovirus-transduced marrow from mice lacking all three Src kinases efficiently induced CML but not B-ALL in recipients. The kinase inhibitor CGP76030 impaired the proliferation of B-lymphoid cells expressing Bcr-Abl in vitro and prolonged survival of mice with B-ALL but not CML. The combination of CGP76030 and imatinib was superior to imatinib alone in this regard. The biochemical target of CGP76030 in leukemia cells was Src kinases, not Bcr-Abl. These results implicate Src family kinases as therapeutic targets in Ph(+) B-ALL and suggest that simultaneous inhibition of Src and Bcr-Abl kinases may benefit individuals with Ph(+) acute leukemia.
Subject(s)
Burkitt Lymphoma/enzymology , Fusion Proteins, bcr-abl/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , src-Family Kinases/physiology , Animals , Benzamides , Burkitt Lymphoma/pathology , Cell Division/drug effects , Drug Therapy, Combination , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Piperazines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/physiology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-hck , Pyrimidines/pharmacology , Pyrroles/pharmacology , src-Family Kinases/antagonists & inhibitorsABSTRACT
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Subject(s)
Databases, Pharmaceutical , Ion Channels , Humans , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-CoupledABSTRACT
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ligands , Ion Channels/chemistry , Receptors, G-Protein-Coupled , Receptors, Cytoplasmic and NuclearABSTRACT
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.