ABSTRACT
Kidney podocytes' function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology.
Subject(s)
Actin Cytoskeleton/pathology , Actin Cytoskeleton/physiology , Cell Surface Extensions/pathology , Models, Biological , Podocytes/pathology , Podocytes/physiology , Cell Polarity , Cell Size , Cell Surface Extensions/physiology , Cells, Cultured , Computer Simulation , Humans , Nonlinear Dynamics , Spatio-Temporal AnalysisABSTRACT
Molecular interactions of importance to cell biology are subject to sol-gel transitions: large clusters of weakly interacting multivalent molecules (gel phase) are produced at a critical concentration of monomers. Examples include cell-cell and cell-matrix adhesions, nucleoprotein bodies, and cell signaling platforms. We use the term pleomorphic ensembles (PEs) to describe these clusters, because they have dynamic compositions and sizes and have rapid turnover of their molecular constituents; this plasticity can be highly responsive to cellular signals. The classical polymer physical chemistry theory developed by Flory and Stockmayer provides a brilliant framework for treating multivalent interactions for simple idealized systems. But the complexity and variability of PEs challenges existing modeling approaches. Here we describe and validate a computational algorithm that extends the Flory-Stockmayer formalism to overcome the limitations of analytic theories. We divide the problem by deterministically calculating the fraction of bound sites for each type of binding site, followed by the stochastic assignment of the bonds to a finite number of molecules. The method allows for high valency within many different kinds of interacting molecules and site types, permits simulation of steady-state distributions, as well as assembly kinetics, and can treat cooperative binding within one of the interacting molecules. We then apply our method to the analysis of interactions in the nephrin-Nck-N-Wasp signaling system, demonstrating how multivalent layered scaffolds produce PEs at low monomer concentrations despite weak binding interactions. We show how the experimental data for this system are most consistent with synergistic cooperative interactions between Nck and N-Wasp.
Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Algorithms , Membrane Proteins/chemistry , Models, Biological , Oncogene Proteins/chemistry , Wiskott-Aldrich Syndrome Protein Family/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biopolymers/chemistry , Gels/chemistry , Humans , Kinetics , Membrane Proteins/metabolism , Oncogene Proteins/metabolism , Protein Binding , Wiskott-Aldrich Syndrome Protein Family/metabolismABSTRACT
A dynamical biophysical model for the functioning of an epithelium is presented. This model integrates the electrical and osmotic behaviors of the epithelium, taking into account intracellular conditions. The specific tissue modeled is the human bronchial epithelium, which is of particular interest, as it is the location of the most common lethal symptoms of cystic fibrosis. The model is implemented in a modular form to facilitate future application of the code to other epithelial tissue by inputting different transporters, channels, and geometric parameters. The model includes pH regulation as an integral component of overall regulation of epithelial function, through the interdependence of pH, bicarbonate concentration, and current. The procedures for specification, the validation of the model, and parametric studies are presented using available experimental data of cultured human bronchial epithelium. Parametric studies are performed to elucidate a), the contribution of basolateral chloride channels to the short-circuit current functional form, and b), the role that regulation of basolateral potassium conductance plays in epithelial function.
Subject(s)
Biophysical Phenomena , Bronchi/physiology , Electricity , Epithelium/physiology , Models, Biological , Osmosis/physiology , Computer Simulation , Humans , Hydrogen-Ion Concentration , Membrane Potentials/physiologyABSTRACT
While the demand for a strong STEM workforce continues to grow, there are challenges that threaten our ability to recruit, train, and retain such a workforce in a way that is effective and sustainable and fosters innovation. One way in which we are meeting this challenge is through the use of the arts in the training of scientists. In this Perspectives article, we review the use of the arts in science education and its benefits in both K-12 and postsecondary education. We also review the use of STEAM (science, technology, engineering, arts, and mathematics) programs in science outreach and the development of professional scientists.