Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473953

ABSTRACT

Cryptosporidium parvum is an apicomplexan parasite causing persistent diarrhea in humans and animals. Issuing from target-based drug development, calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs), with excellent efficacies in vitro and in vivo have been generated. Some BKIs including BKI-1748 share a core structure with similarities to the first-generation antiprotozoal drug quinine, which is known to exert notorious side effects. Unlike quinine, BKI-1748 rapidly interfered with C. parvum proliferation in the human colon tumor (HCT) cell line HCT-8 cells and caused dramatic effects on the parasite ultrastructure. To identify putative BKI targets in C. parvum and in host cells, we performed differential affinity chromatography with cell-free extracts from non-infected and infected HCT-8 cells using BKI-1748 and quinine epoxy-activated sepharose columns followed by mass spectrometry. C. parvum proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from both BKI-1748 and quinine columns. However, no C. parvum proteins could be identified binding exclusively to BKI-1748. In contrast, 25 BKI-1748-specific binding proteins originating from HCT-8 cells were detected. Moreover, 29 C. parvum and 224 host cell proteins were identified in both BKI-1748 as well as in quinine eluates. In both C. parvum and host cells, the largest subset of binding proteins was involved in RNA binding and modification, with a focus on ribosomal proteins and proteins involved in RNA splicing. These findings extend previous results, showing that BKI-1748 interacts with putative targets involved in common, essential pathways such as translation and RNA processing.


Subject(s)
Antineoplastic Agents , Antiprotozoal Agents , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Humans , Quinine/pharmacology , Antiprotozoal Agents/pharmacology , Antineoplastic Agents/pharmacology
2.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36920244

ABSTRACT

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Subject(s)
Antineoplastic Agents , Antiprotozoal Agents , Cryptosporidiosis , Cryptosporidium parvum , Animals , Cattle , Mice , Rats , Cryptosporidiosis/drug therapy , Antiprotozoal Agents/pharmacology , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Oocysts
3.
Antimicrob Agents Chemother ; 66(7): e0001722, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35703552

ABSTRACT

A phenotypic screen of the ReFRAME compound library was performed to identify cell-active inhibitors that could be developed as therapeutics for giardiasis. A primary screen against Giardia lamblia GS clone H7 identified 85 cell-active compounds at a hit rate of 0.72%. A cytotoxicity counterscreen against HEK293T cells was carried out to assess hit compound selectivity for further prioritization. Mavelertinib (PF-06747775), a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), was identified as a potential new therapeutic based on indication, activity, and availability after reconfirmation. Mavelertinib has in vitro efficacy against metronidazole-resistant 713-M3 strains. Other EGFR-TKIs screened in follow-up assays exhibited insignificant inhibition of G. lamblia at 5 µM, suggesting that the primary molecular target of mavelertinib may have a different mechanistic binding mode from human EGFR-tyrosine kinase. Mavelertinib, dosed as low as 5 mg/kg of body weight or as high as 50 mg/kg, was efficacious in the acute murine Giardia infection model. These results suggest that mavelertinib merits consideration for repurposing and advancement to giardiasis clinical trials while its analogues are further developed.


Subject(s)
Giardia lamblia , Giardiasis , Animals , ErbB Receptors , Giardiasis/drug therapy , HEK293 Cells , Humans , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
4.
Article in English | MEDLINE | ID: mdl-33753338

ABSTRACT

The intestinal protozoan Cryptosporidium is a leading cause of diarrheal disease and mortality in young children. There is currently no fully effective treatment for cryptosporidiosis, which has stimulated interest in anticryptosporidial development over the last ∼10 years, with numerous lead compounds identified, including several tRNA synthetase inhibitors. Here, we report the results of a dairy calf efficacy trial of the methionyl-tRNA (Cryptosporidium parvum MetRS [CpMetRS]) synthetase inhibitor 2093 and the spontaneous emergence of drug resistance. Dairy calves experimentally infected with Cryptosporidium parvum initially improved with 2093 treatment, but parasite shedding resumed in two of three calves on treatment day 5. Parasites shed by each recrudescent calf had different amino acid-altering mutations in the gene encoding CpMetRS (CpMetRS), yielding either an aspartate 243-to-glutamate (D243E) or a threonine 246-to-isoleucine (T246I) mutation. Transgenic parasites engineered to have either the D243E or T246I CpMetRS mutation using CRISPR/Cas9 grew normally but were highly 2093 resistant; the D243E and T246I mutant-expressing parasites, respectively, had 2093 half-maximal effective concentrations (EC50s) that were 613- and 128-fold that of transgenic parasites with wild-type CpMetRS. In studies using recombinant enzymes, the D243E and T246I mutations shifted the 2093 IC50 >170-fold. Structural modeling of CpMetRS based on an inhibitor-bound Trypanosoma brucei MetRS crystal structure suggested that the resistance mutations reposition nearby hydrophobic residues, interfering with compound binding while minimally impacting substrate binding. This is the first report of naturally emerging Cryptosporidium drug resistance, highlighting the need to address the potential for anticryptosporidial resistance and establish strategies to limit its occurrence.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Cattle , Cattle Diseases/drug therapy , Child , Child, Preschool , Cryptosporidiosis/drug therapy , Cryptosporidium/genetics , Cryptosporidium parvum/genetics , Drug Resistance/genetics , Feces , Humans
5.
J Antimicrob Chemother ; 75(5): 1218-1227, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32011682

ABSTRACT

BACKGROUND: Methionyl-tRNA synthetase (MetRS) inhibitors are under investigation for the treatment of intestinal infections caused by Giardia lamblia. OBJECTIVES: To properly analyse the therapeutic potential of the MetRS inhibitor 1717, experimental tools including a robust cell-based assay and a murine model of infection were developed based on novel strains of G. lamblia that employ luciferase reporter systems to quantify viable parasites. METHODS: Systematic screening of Giardia-specific promoters and luciferase variants led to the development of a strain expressing the click beetle green luciferase. Further modifying this strain to express NanoLuc created a dual reporter strain capable of quantifying parasites in both the trophozoite and cyst stages. These strains were used to develop a high-throughput cell assay and a mouse infection model. A library of MetRS inhibitors was screened in the cell assay and Compound-1717 was tested for efficacy in the mouse infection model. RESULTS: Cell viability in in vitro compound screens was quantified via bioluminescence readouts while infection loads in mice were monitored with non-invasive whole-animal imaging and faecal analysis. Compound-1717 was effective in clearing mice of Giardia infection in 3 days at varying doses, which was supported by data from enzymatic and phenotypic cell assays. CONCLUSIONS: The new in vitro and in vivo assays based on luciferase expression by engineered G. lamblia strains are useful for the discovery and development of new therapeutics for giardiasis. MetRS inhibitors, as validated by Compound-1717, have promising anti-giardiasis properties that merit further study as alternative therapeutics.


Subject(s)
Giardia lamblia , Giardiasis , Methionine-tRNA Ligase , Animals , Giardiasis/drug therapy , High-Throughput Screening Assays , Luciferases/genetics , Mice
6.
Genes Dev ; 26(3): 235-40, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22267412

ABSTRACT

Protein poly(ADP-ribosyl)ation and ubiquitination are two key post-translational modifications regulating many biological processes. Through crystallographic and biochemical analysis, we show that the RNF146 WWE domain recognizes poly(ADP-ribose) (PAR) by interacting with iso-ADP-ribose (iso-ADPR), the smallest internal PAR structural unit containing the characteristic ribose-ribose glycosidic bond formed during poly(ADP-ribosyl)ation. The key iso-ADPR-binding residues we identified are highly conserved among WWE domains. Binding assays further demonstrate that PAR binding is a common function for the WWE domain family. Since many WWE domain-containing proteins are known E3 ubiquitin ligases, our results suggest that protein poly(ADP-ribosyl)ation may be a general mechanism to target proteins for ubiquitination.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Models, Molecular , Poly Adenosine Diphosphate Ribose/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Adenosine Diphosphate Ribose/chemistry , Amino Acid Sequence , Gene Expression Regulation, Enzymologic , HEK293 Cells , Humans , Molecular Sequence Data , Mutagenesis , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Ubiquitin-Protein Ligases/genetics , Ubiquitination
7.
J Infect Dis ; 219(9): 1464-1473, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30423128

ABSTRACT

Bumped kinase inhibitors (BKIs) have been shown to be potent inhibitors of Toxoplasma gondii calcium-dependent protein kinase 1. Pyrazolopyrimidine and 5-aminopyrazole-4-carboxamide scaffold-based BKIs are effective in acute and chronic experimental models of toxoplasmosis. Through further exploration of these 2 scaffolds and a new pyrrolopyrimidine scaffold, additional compounds have been identified that are extremely effective against acute experimental toxoplasmosis. The in vivo efficacy of these BKIs demonstrates that the cyclopropyloxynaphthyl, cyclopropyloxyquinoline, and 2-ethoxyquinolin-6-yl substituents are associated with efficacy across scaffolds. In addition, a broad range of plasma concentrations after oral dosing resulted from small structural changes to the BKIs. These select BKIs include anti-Toxoplasma compounds that are effective against acute experimental toxoplasmosis and are not toxic in human cell assays, nor to mice when administered for therapy. The BKIs described here are promising late leads for improving anti-Toxoplasma therapy.


Subject(s)
Protein Kinase Inhibitors/therapeutic use , Protozoan Proteins/antagonists & inhibitors , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Toxoplasmosis, Animal/drug therapy , Toxoplasmosis, Cerebral/drug therapy , Administration, Oral , Animals , Area Under Curve , Female , In Vitro Techniques , Mice , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacology , Pyrazoles/blood , Pyrazoles/pharmacology , Pyrimidines/blood , Pyrimidines/pharmacology
8.
Article in English | MEDLINE | ID: mdl-30745384

ABSTRACT

Cryptosporidiosis is one of the leading causes of moderate to severe diarrhea in children in low-resource settings. The therapeutic options for cryptosporidiosis are limited to one drug, nitazoxanide, which unfortunately has poor activity in the most needy populations of malnourished children and HIV-infected persons. We describe here the discovery and early optimization of a class of imidazopyridine-containing compounds with potential for treating Cryptosporidium infections. The compounds target the Cryptosporidium methionyl-tRNA synthetase (MetRS), an enzyme that is essential for protein synthesis. The most potent compounds inhibited the enzyme with Ki values in the low picomolar range. Cryptosporidium cells in culture were potently inhibited with 50% effective concentrations as low as 7 nM and >1,000-fold selectivity over mammalian cells. A parasite persistence assay indicates that the compounds act by a parasiticidal mechanism. Several compounds were demonstrated to control infection in two murine models of cryptosporidiosis without evidence of toxicity. Pharmacological and physicochemical characteristics of compounds were investigated to determine properties that were associated with higher efficacy. The results indicate that MetRS inhibitors are excellent candidates for development for anticryptosporidiosis therapy.


Subject(s)
Antiprotozoal Agents/pharmacology , Cryptosporidiosis/drug therapy , Cryptosporidium parvum/drug effects , Imidazoles/pharmacology , Methionine-tRNA Ligase/antagonists & inhibitors , Pyridines/pharmacology , Animals , Cryptosporidium parvum/genetics , Cyclooxygenase 1/drug effects , Disease Models, Animal , Drug Discovery/methods , Female , Hep G2 Cells , Humans , Imidazoles/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyridines/chemistry
9.
J Infect Dis ; 216(1): 55-63, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28541457

ABSTRACT

There is a substantial need for novel therapeutics to combat the widespread impact caused by Crytosporidium infection. However, there is a lack of knowledge as to which drug pharmacokinetic (PK) characteristics are key to generate an in vivo response, specifically whether systemic drug exposure is crucial for in vivo efficacy. To identify which PK properties are correlated with in vivo efficacy, we generated physiologically based PK models to simulate systemic and gastrointestinal drug concentrations for a series of bumped kinase inhibitors (BKIs) that have nearly identical in vitro potency against Cryptosporidium but display divergent PK properties. When BKI concentrations were used to predict in vivo efficacy with a neonatal model of Cryptosporidium infection, these concentrations in the large intestine were the sole predictors of the observed in vivo efficacy. The significance of large intestinal BKI exposure for predicting in vivo efficacy was further supported with an adult mouse model of Cryptosporidium infection. This study suggests that drug exposure in the large intestine is essential for generating a superior in vivo response, and that physiologically based PK models can assist in the prioritization of leading preclinical drug candidates for in vivo testing.


Subject(s)
Cryptosporidiosis/drug therapy , Gastrointestinal Tract/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Animals , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/isolation & purification , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gastrointestinal Tract/metabolism , Inhibitory Concentration 50 , Mice , Mice, Knockout , Models, Theoretical , Naphthalenes/pharmacokinetics , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/blood , Pyrazoles/pharmacokinetics
10.
Article in English | MEDLINE | ID: mdl-28137808

ABSTRACT

We present the effects of two novel bumped kinase inhibitors, BKI-1517 and BKI-1553, against Neospora caninum tachyzoites in vitro and in experimentally infected pregnant mice. These compounds inhibited tachyzoite proliferation of a transgenic beta-galactosidase reporter strain cultured in human foreskin fibroblasts with 50% inhibitory concentrations (IC50s) of 0.05 ± 0.03 and 0.18 ± 0.03 µM, respectively. As assessed by an alamarBlue assay, fibroblast IC50s were above 20 µM; however, morphological changes occurred in cultures treated with >5 µM BKI-1517 after prolonged exposure (>6 days). Treatment of intracellular tachyzoites with 5 µM BKI-1553 for 6 days inhibited endodyogeny by interfering with the separation of newly formed zoites from a larger multinucleated parasite mass. In contrast, parasites treated with 5 µM BKI-1517 did not form large complexes and showed much more evidence of cell death. However, after a treatment duration of 10 days in vitro, both compounds failed to completely prevent the regrowth of parasites from culture. BALB/c mice experimentally infected with N. caninum Spain7 (Nc-Spain7) and then treated during 6 days with BKI-1517 or BKI-1553 at different dosages showed a significant reduction of the cerebral parasite load. However, fertility was impaired by BKI-1517 when applied at 50 mg/kg of body weight/day. At 20 mg/kg/day, BKI-1517 significantly inhibited the vertical transmission of N. caninum to pups and increased the rate of survival of offspring. BKI-1553 was less detrimental to fertility and also provided significant but clearly less pronounced protection of dams and offspring. These results demonstrate that, when judiciously applied, this compound class protects offspring from vertical transmission and disease.


Subject(s)
Coccidiosis/drug therapy , Coccidiostats/pharmacology , Infectious Disease Transmission, Vertical/prevention & control , Life Cycle Stages/drug effects , Neospora/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Animals , Brain/drug effects , Brain/parasitology , Cell Proliferation/drug effects , Coccidiosis/parasitology , Coccidiosis/transmission , Coccidiostats/chemistry , Female , Fertility/drug effects , Fibroblasts/drug effects , Fibroblasts/parasitology , Gene Expression , Genes, Reporter , Humans , Life Cycle Stages/physiology , Mice , Mice, Inbred BALB C , Neospora/enzymology , Neospora/genetics , Neospora/growth & development , Oxazines , Pregnancy , Primary Cell Culture , Protein Kinase Inhibitors/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Pyrazoles/chemistry , Pyrimidines/chemistry , Quinolines/chemistry , Xanthenes , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
11.
Article in English | MEDLINE | ID: mdl-28848016

ABSTRACT

Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 µg/ml against Staphylococcus, Enterococcus, and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Positive Bacteria/drug effects , Methionine-tRNA Ligase/antagonists & inhibitors , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Blood Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Escherichia coli/drug effects , Female , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Inactivation, Metabolic , Mice , Microbial Sensitivity Tests , Microsomes, Liver , Staphylococcus aureus/drug effects
12.
Article in English | MEDLINE | ID: mdl-28533246

ABSTRACT

Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) is a promising target for drug development against cryptosporidiosis. We report a series of low-nanomolar CpCDPK1 5-aminopyrazole-4-carboxamide (AC) scaffold inhibitors that also potently inhibit C. parvum growth in vitro Correlation between anti-CpCDPK1 and C. parvum growth inhibition, as previously reported for pyrazolopyrimidines, was not apparent. Nonetheless, lead AC compounds exhibited a substantial reduction of parasite burden in the neonatal mouse cryptosporidiosis model when dosed at 25 mg/kg.


Subject(s)
Antiprotozoal Agents/pharmacology , Cryptosporidiosis/drug therapy , Cryptosporidium parvum/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Animals , Antiprotozoal Agents/chemistry , Cryptosporidiosis/parasitology , Cryptosporidium parvum/growth & development , Mice , Protozoan Proteins/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology
13.
Bioorg Med Chem Lett ; 27(12): 2702-2707, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28465105

ABSTRACT

Potent inhibitors of Trypanosoma brucei methionyl-tRNA synthetase were previously designed using a structure-guided approach. Compounds 1 and 2 were the most active compounds in the cyclic and linear linker series, respectively. To further improve cellular potency, SAR investigation of a binding fragment targeting the "enlarged methionine pocket" (EMP) was performed. The optimization led to the identification of a 6,8-dichloro-tetrahydroquinoline ring as a favorable fragment to bind the EMP. Replacement of 3,5-dichloro-benzyl group (the EMP binding fragment) of inhibitor 2 using this tetrahydroquinoline fragment resulted in compound 13, that exhibited an EC50 of 4nM.


Subject(s)
Enzyme Inhibitors/pharmacology , Methionine-tRNA Ligase/antagonists & inhibitors , Methionine/pharmacology , Trypanosoma brucei brucei/enzymology , Animals , Binding Sites/drug effects , Brain/metabolism , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hep G2 Cells , Humans , Methionine/administration & dosage , Methionine/chemistry , Methionine-tRNA Ligase/metabolism , Mice , Molecular Structure , Structure-Activity Relationship
14.
Exp Parasitol ; 180: 71-83, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28065755

ABSTRACT

Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors.


Subject(s)
Antiprotozoal Agents/pharmacology , Apicomplexa/drug effects , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Infections/drug therapy , Animals , Antiprotozoal Agents/therapeutic use , Apicomplexa/enzymology , Benzimidazoles/chemistry , Humans , Imidazoles/chemistry , Protein Kinase Inhibitors/therapeutic use , Protozoan Infections/prevention & control , Pyridines/chemistry
15.
J Infect Dis ; 214(12): 1850-1855, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27738055

ABSTRACT

Cryptosporidium is recognized as one of the main causes of childhood diarrhea worldwide. However, the current treatment for cryptosporidiosis is suboptimal. Calcium flux is essential for entry in apicomplexan parasites. Calcium-dependent protein kinases (CDPKs) are distinct from protein kinases of mammals, and the CDPK1 of the apicomplexan Cryptosporidium lack side chains that typically block a hydrophobic pocket in protein kinases. We exploited this to develop bumped kinase inhibitors (BKIs) that selectively target CDPK1. We have shown that several BKIs of Cryptosporidium CDPK1 potently reduce enzymatic activity and decrease parasite numbers when tested in vitro. In the present work, we studied the anticryptosporidial activity of BKI-1517, a novel BKI. The half maximal effective concentration for Cryptosporidium parvum in HCT-8 cells was determined to be approximately 50 nM. Silencing experiments of CDPK1 suggest that BKI-1517 acts on CDPK1 as its primary target. In a mouse model of chronic infection, 5 of 6 SCID/beige mice (83.3%) were cured after treatment with a single daily dose of 120 mg/kg BKI-1517. No side effects were observed. These data support advancing BKI-1517 as a lead compound for drug development for cryptosporidiosis.


Subject(s)
Antiprotozoal Agents/administration & dosage , Cryptosporidiosis/drug therapy , Immunocompromised Host , Protein Kinase Inhibitors/administration & dosage , Animals , Antiprotozoal Agents/adverse effects , Antiprotozoal Agents/isolation & purification , Calcium-Binding Proteins/antagonists & inhibitors , Cryptosporidium parvum/drug effects , Disease Models, Animal , Mice, SCID , Parasitic Sensitivity Tests , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/isolation & purification , Treatment Outcome
16.
J Infect Dis ; 214(12): 1856-1864, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27923949

ABSTRACT

Cryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, is a diarrheal disease that has produced a large global burden in mortality and morbidity in humans and livestock. There are currently no consistently effective parasite-specific pharmaceuticals available for this disease. Bumped kinase inhibitors (BKIs) specific for parasite calcium-dependent protein kinases (CDPKs) have been shown to reduce infection in several parasites having medical and veterinary importance, including Toxoplasma gondii, Plasmodium falciparum, and C. parvum In the present study, BKIs were screened for efficacy against C. parvum infection in the neonatal mouse model. Three BKIs were then selected for safety and clinical efficacy evaluation in the calf model for cryptosporidiosis. Significant BKI treatment effects were observed for virtually all clinical and parasitological scoring parameters, including diarrhea severity, oocyst shedding, and overall health. These results provide proof of concept for BKIs as therapeutic drug leads in an animal model for human cryptosporidiosis.


Subject(s)
Antiprotozoal Agents/administration & dosage , Cattle Diseases/drug therapy , Cryptosporidiosis/drug therapy , Protein Kinase Inhibitors/administration & dosage , Animals , Animals, Newborn , Antiprotozoal Agents/adverse effects , Cattle , Cryptosporidium parvum/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Mice, Inbred BALB C , Protein Kinase Inhibitors/adverse effects , Treatment Outcome
17.
Bioorg Med Chem Lett ; 26(22): 5487-5491, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27780638

ABSTRACT

Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) is essential for the exflagellation of male gametocytes. Inhibition of PfCDPK4 is an effective way of blocking the transmission of malaria by mosquitoes. A series of 5-aminopyrazole-4-carboxamide analogues are demonstrated to be potent inhibitors of PfCDPK4. The compounds are also able to block exflagellation of Plasmodium falciparum male gametocytes without observable toxicity to mammalian cells.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protein Kinases/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Animals , Cell Line , Culicidae/parasitology , Humans , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Plasmodium falciparum/physiology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1684-98, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26249349

ABSTRACT

American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.


Subject(s)
Enzyme Inhibitors/chemistry , Histidine-tRNA Ligase/antagonists & inhibitors , Histidine-tRNA Ligase/chemistry , Small Molecule Libraries/chemistry , Trypanosoma cruzi/enzymology , Binding Sites , Chagas Disease/drug therapy , Chagas Disease/microbiology , Drug Discovery , Enzyme Inhibitors/pharmacology , Histidine-tRNA Ligase/metabolism , Humans , Models, Molecular , Small Molecule Libraries/pharmacology , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
19.
Antimicrob Agents Chemother ; 59(11): 7128-31, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26324270

ABSTRACT

The methionyl-tRNA synthetase (MetRS) is a novel drug target for the protozoan pathogen Giardia intestinalis. This protist contains a single MetRS that is distinct from the human cytoplasmic MetRS. A panel of MetRS inhibitors was tested against recombinant Giardia MetRS, Giardia trophozoites, and mammalian cell lines. The best compounds inhibited trophozoite growth at 500 nM (metronidazole did so at ∼5,000 nM) and had low cytotoxicity against mammalian cells, indicating excellent potential for further development as anti-Giardia drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Giardia lamblia/drug effects , Methionine-tRNA Ligase/antagonists & inhibitors , Trophozoites/drug effects , Giardia lamblia/enzymology , Metronidazole/pharmacology , Trophozoites/enzymology
20.
Antimicrob Agents Chemother ; 59(10): 6361-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26248379

ABSTRACT

We report on the in vitro effects of the bumped kinase inhibitor 1294 (BKI-1294) in cultures of virulent Neospora caninum isolates Nc-Liverpool (Nc-Liv) and Nc-Spain7 and in two strains of Toxoplasma gondii (RH and ME49), all grown in human foreskin fibroblasts. In these parasites, BKI-1294 acted with 50% inhibitory concentrations (IC50s) ranging from 20 nM (T. gondii RH) to 360 nM (N. caninum Nc-Liv), and exposure of intracellular stages to 1294 led to the nondisjunction of newly formed tachyzoites, resulting in the formation of multinucleated complexes similar to complexes previously observed in BKI-1294-treated N. caninum beta-galactosidase-expressing parasites. However, such complexes were not seen in a transgenic T. gondii strain that expressed CDPK1 harboring a mutation (G to M) in the gatekeeper residue. In T. gondii ME49 and N. caninum Nc-Liv, exposure of cultures to BKI-1294 resulted in the elevated expression of mRNA coding for the bradyzoite marker BAG1. Unlike in bradyzoites, SAG1 expression was not repressed. Immunofluorescence also showed that these multinucleated complexes expressed SAG1 and BAG1 and the monoclonal antibody CC2, which binds to a yet unidentified bradyzoite antigen, also exhibited increased labeling. In a pregnant mouse model, BKI-1294 efficiently inhibited vertical transmission in BALB/c mice experimentally infected with one of the two virulent isolates Nc-Liv or Nc-Spain7, demonstrating proof of concept that this compound protected offspring from vertical transmission and disease. The observed deregulated antigen expression effect may enhance the immune response during BKI-1294 therapy and will be the subject of future studies.


Subject(s)
Coccidiosis/drug therapy , Coccidiostats/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/genetics , Protozoan Proteins/antagonists & inhibitors , Toxoplasmosis/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , Coccidiosis/parasitology , Coccidiosis/transmission , Female , Fibroblasts/drug effects , Fibroblasts/parasitology , Gene Expression , Heat-Shock Proteins/agonists , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Infectious Disease Transmission, Vertical/prevention & control , Mice , Mice, Inbred BALB C , Neospora/drug effects , Neospora/enzymology , Neospora/genetics , Pregnancy , Primary Cell Culture , Protein Kinases/metabolism , Protozoan Proteins/agonists , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Toxoplasma/drug effects , Toxoplasma/enzymology , Toxoplasma/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/transmission
SELECTION OF CITATIONS
SEARCH DETAIL