Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38447573

ABSTRACT

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Subject(s)
Antigen Presentation , Neoplasms , Neutrophils , Animals , Humans , Mice , Antigens, Neoplasm , Leucine/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neutrophils/metabolism , T-Lymphocytes , Single-Cell Gene Expression Analysis
2.
N Engl J Med ; 390(3): 230-241, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38231624

ABSTRACT

BACKGROUND: Simnotrelvir is an oral 3-chymotrypsin-like protease inhibitor that has been found to have in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and potential efficacy in a phase 1B trial. METHODS: In this phase 2-3, double-blind, randomized, placebo-controlled trial, we assigned patients who had mild-to-moderate coronavirus disease 2019 (Covid-19) and onset of symptoms within the past 3 days in a 1:1 ratio to receive 750 mg of simnotrelvir plus 100 mg of ritonavir or placebo twice daily for 5 days. The primary efficacy end point was the time to sustained resolution of symptoms, defined as the absence of 11 Covid-19-related symptoms for 2 consecutive days. Safety and changes in viral load were also assessed. RESULTS: A total of 1208 patients were enrolled at 35 sites in China; 603 were assigned to receive simnotrelvir and 605 to receive placebo. Among patients in the modified intention-to-treat population who received the first dose of trial drug or placebo within 72 hours after symptom onset, the time to sustained resolution of Covid-19 symptoms was significantly shorter in the simnotrelvir group than in the placebo group (180.1 hours [95% confidence interval {CI}, 162.1 to 201.6] vs. 216.0 hours [95% CI, 203.4 to 228.1]; median difference, -35.8 hours [95% CI, -60.1 to -12.4]; P = 0.006 by Peto-Prentice test). On day 5, the decrease in viral load from baseline was greater in the simnotrelvir group than in the placebo group (mean difference [±SE], -1.51±0.14 log10 copies per milliliter; 95% CI, -1.79 to -1.24). The incidence of adverse events during treatment was higher in the simnotrelvir group than in the placebo group (29.0% vs. 21.6%). Most adverse events were mild or moderate. CONCLUSIONS: Early administration of simnotrelvir plus ritonavir shortened the time to the resolution of symptoms among adult patients with Covid-19, without evident safety concerns. (Funded by Jiangsu Simcere Pharmaceutical; ClinicalTrials.gov number, NCT05506176.).


Subject(s)
COVID-19 , Coronavirus Protease Inhibitors , Adult , Humans , Administration, Oral , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , China , Coronavirus M Proteins/antagonists & inhibitors , Coronavirus M Proteins/metabolism , Coronavirus Protease Inhibitors/administration & dosage , Coronavirus Protease Inhibitors/adverse effects , Coronavirus Protease Inhibitors/pharmacology , Coronavirus Protease Inhibitors/therapeutic use , COVID-19/metabolism , COVID-19/therapy , COVID-19 Drug Treatment/methods , Double-Blind Method , Ritonavir/administration & dosage , Ritonavir/adverse effects , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , Time Factors , Drug Combinations
3.
Hepatology ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779918

ABSTRACT

BACKGROUND AND AIMS: Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH AND RESULTS: We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in patients with HCC. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from NK cell killing by upregulating inhibitory checkpoint CD155 (PVR cell adhesion molecule), therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK-cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another 2 receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK-cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS: Our results demonstrated CTC evasion from NK-cell-mediated innate immunosurveillance mainly through immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.

4.
Exp Cell Res ; 435(2): 113947, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38301989

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-ß and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Cancer-Associated Fibroblasts/pathology , Liver Neoplasms/pathology , Mice, Nude , Metabolic Reprogramming , Cell Line, Tumor , Fibroblasts/metabolism , Cytokines/metabolism , Tumor Microenvironment , Cell Proliferation
5.
Cell Mol Life Sci ; 81(1): 327, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085655

ABSTRACT

Dysregulation of mucosal immune system has been proposed to be critical in the pathogenesis of inflammatory bowel diseases (IBDs). Regulatory T cells (Tregs) play an important role in regulating immune responses. Tregs are involved in maintaining intestinal homeostasis and exerting suppressive function in colitis. Our previous studies showed that a novel forkhead box protein P3 (Foxp3) negative Tregs (Treg-of-B cells), induced by culturing naïve CD4+ T cells with B cells, could protect against colitis and downregulate T helper (Th) 1 and Th17 cell cytokines in T cell-mediated colitis. In the present study, we aimed to induce Treg-of-B cells in the CD8+ T-cell population and investigate their characteristics and immunomodulatory functions. Our results showed that CD8+ Treg-of-B cells expressed Treg-associated markers, including lymphocyte-activation gene-3 (LAG3), inducible co-stimulator (ICOS), programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), tumor necrosis factor receptor superfamily member-4 (TNFRSF4, OX40), and tumor necrosis factor receptor superfamily member-18 (TNFRSF18, GITR), but did not express Foxp3. CD8+ Treg-of-B cells produced higher concentration of inhibitory cytokine interleukin (IL)-10, and expressed higher levels of cytotoxic factor granzyme B and perforin after stimulation, compared to those of CD8+CD25- T cells. Moreover, CD8+ Treg-of-B cells suppressed T cell proliferation in vitro and alleviated colonic inflammation in chronic dextran sulfate sodium (DSS)-induced colitis. In conclusion, our study identified a novel subpopulation of CD8+ Tregs with suppressive effects through cell contact. These CD8+ Treg-of-B cells might have therapeutic potential for IBDs.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Inflammatory Bowel Diseases , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Colitis/immunology , Colitis/pathology , Colitis/chemically induced , Dextran Sulfate , Forkhead Transcription Factors/metabolism , Interleukin-10/metabolism , Interleukin-10/immunology
6.
Mol Cancer ; 23(1): 157, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095854

ABSTRACT

BACKGROUND: Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS: Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS: We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-ß signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-ß-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION: By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Humans , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Heterogeneity , Mice , Cell Line, Tumor , Prognosis , Gene Expression Profiling , Transcriptome , Computational Biology/methods , Neoplasm Metastasis
7.
J Hepatol ; 81(1): 93-107, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38403027

ABSTRACT

BACKGROUND & AIMS: The effectiveness of immune checkpoint inhibitor (ICI) therapy for hepatocellular carcinoma (HCC) is limited by treatment resistance. However, the mechanisms underlying immunotherapy resistance remain elusive. We aimed to identify the role of CT10 regulator of kinase-like (CRKL) in resistance to anti-PD-1 therapy in HCC. METHODS: Gene expression in HCC specimens from 10 patients receiving anti-PD-1 therapy was identified by RNA-sequencing. A total of 404 HCC samples from tissue microarrays were analyzed by immunohistochemistry. Transgenic mice (Alb-Cre/Trp53fl/fl) received hydrodynamic tail vein injections of a CRKL-overexpressing vector. Mass cytometry by time of flight was used to profile the proportion and status of different immune cell lineages in the mouse tumor tissues. RESULTS: CRKL was identified as a candidate anti-PD-1-resistance gene using a pooled genetic screen. CRKL overexpression nullifies anti-PD-1 treatment efficacy by mobilizing tumor-associated neutrophils (TANs), which block the infiltration and function of CD8+ T cells. PD-L1+ TANs were found to be an essential subset of TANs that were regulated by CRKL expression and display an immunosuppressive phenotype. Mechanistically, CRKL inhibits APC (adenomatous polyposis coli)-mediated proteasomal degradation of ß-catenin by competitively decreasing Axin1 binding, and thus promotes VEGFα and CXCL1 expression. Using human HCC samples, we verified the positive correlations of CRKL/ß-catenin/VEGFα and CXCL1. Targeting CRKL using CRISPR-Cas9 gene editing (CRKL knockout) or its downstream regulators effectively restored the efficacy of anti-PD-1 therapy in an orthotopic mouse model and a patient-derived organotypic tumor spheroid model. CONCLUSIONS: Activation of the CRKL/ß-catenin/VEGFα and CXCL1 axis is a critical obstacle to successful anti-PD-1 therapy. Therefore, CRKL inhibitors combined with anti-PD-1 could be useful for the treatment of HCC. IMPACT AND IMPLICATIONS: Here, we found that CRKL was overexpressed in anti-PD-1-resistant hepatocellular carcinoma (HCC) and that CRKL upregulation promotes anti-PD-1 resistance in HCC. We identified that upregulation of the CRKL/ß-catenin/VEGFα and CXCL1 axis contributes to anti-PD-1 tolerance by promoting infiltration of tumor-associated neutrophils. These findings support the strategy of bevacizumab-based immune checkpoint inhibitor combination therapy, and CRKL inhibitors combined with anti-PD-1 therapy may be developed for the treatment of HCC.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Liver Neoplasms , Neutrophil Infiltration , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Humans , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice, Transgenic , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Male , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics
8.
Cancer Immunol Immunother ; 73(7): 124, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727837

ABSTRACT

BACKGROUND: The combination of immune checkpoint inhibitors and antiangiogenic agents has been effective in treating multiple cancers. This was further explored in an open-label, multicenter phase 2 basket study (NCT04346381), which evaluated the antitumor activity and safety of camrelizumab (an anti-PD-1 antibody) plus famitinib (a receptor tyrosine kinase inhibitor) in patients with advanced solid tumors. We herein report the findings from the cohort of advanced NSCLC patients who progressed after treatment with platinum-doublet chemotherapy and immunotherapy. METHODS: Eligible patients were enrolled and treated with camrelizumab (200 mg once every 3 weeks via intravenous infusion) and oral famitinib (20 mg once daily). The primary endpoint was the objective response rate (ORR). Secondary endpoints included the disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: Forty patients were enrolled in this cohort, with a median follow-up duration of 11.5 months. Three patients (7.5%) achieved a partial response, and 29 patients (72.5%) achieved stable disease. The ORR and DCR with this combination regimen were 7.5% (95% CI, 1.6-20.4) and 80.0% (95% CI, 64.4-90.9), respectively. The median DoR was 12.1 months (95% CI, 10.3-not reached). The median PFS was 5.4 months (95% CI, 4.1-7.5), and the median OS was 12.1 months (95% CI, 9.1-16.7). The estimated 12-month OS rate was 51.5% (95% CI, 34.9-65.9). The most frequent grade 3 or higher treatment-related adverse events occurring in more than 5% of patients included hypertension (27.5%), palmar-plantar erythrodysesthesia syndrome (10%), decreased neutrophil count (10%), and proteinuria (7.5%). CONCLUSION: Camrelizumab plus famitinib demonstrated favorable benefits in PFS and OS, along with manageable safety profiles, in patients with advanced NSCLC who progressed after platinum-doublet chemotherapy and immunotherapy. This finding warrants further exploration.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Female , Middle Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Adult , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , Immunotherapy/methods , Indoles , Pyrroles
9.
BMC Med ; 22(1): 282, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972973

ABSTRACT

BACKGROUND: The advances in deep learning-based pathological image analysis have invoked tremendous insights into cancer prognostication. Still, lack of interpretability remains a significant barrier to clinical application. METHODS: We established an integrative prognostic neural network for intrahepatic cholangiocarcinoma (iCCA), towards a comprehensive evaluation of both architectural and fine-grained information from whole-slide images. Then, leveraging on multi-modal data, we conducted extensive interrogative approaches to the models, to extract and visualize the morphological features that most correlated with clinical outcome and underlying molecular alterations. RESULTS: The models were developed and optimized on 373 iCCA patients from our center and demonstrated consistent accuracy and robustness on both internal (n = 213) and external (n = 168) cohorts. The occlusion sensitivity map revealed that the distribution of tertiary lymphoid structures, the geometric traits of the invasive margin, the relative composition of tumor parenchyma and stroma, the extent of necrosis, the presence of the disseminated foci, and the tumor-adjacent micro-vessels were the determining architectural features that impacted on prognosis. Quantifiable morphological vector extracted by CellProfiler demonstrated that tumor nuclei from high-risk patients exhibited significant larger size, more distorted shape, with less prominent nuclear envelope and textural contrast. The multi-omics data (n = 187) further revealed key molecular alterations left morphological imprints that could be attended by the network, including glycolysis, hypoxia, apical junction, mTORC1 signaling, and immune infiltration. CONCLUSIONS: We proposed an interpretable deep-learning framework to gain insights into the biological behavior of iCCA. Most of the significant morphological prognosticators perceived by the network are comprehensible to human minds.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Deep Learning , Humans , Cholangiocarcinoma/pathology , Prognosis , Bile Duct Neoplasms/pathology , Male , Female , Middle Aged , Image Processing, Computer-Assisted/methods , Aged
10.
J Med Virol ; 96(5): e29634, 2024 May.
Article in English | MEDLINE | ID: mdl-38682578

ABSTRACT

Metabolic reprogramming induced by Epstein-Barr virus (EBV) often mirrors metabolic changes observed in cancer cells. Accumulating evidence suggests that lytic reactivation is crucial in EBV-associated oncogenesis. The aim of this study was to explore the role of metabolite changes in EBV-associated malignancies and viral life cycle control. We first revealed that EBV (LMP1) accelerates the secretion of the oncometabolite D-2HG, and serum D-2HG level is a potential diagnostic biomarker for NPC. EBV (LMP1)-driven metabolite changes disrupts the homeostasis of global DNA methylation and demethylation, which have a significantly inhibitory effect on active DNA demethylation and 5hmC content. We found that loss of 5hmC indicates a poor prognosis for NPC patients, and that 5hmC modification is a restriction factor of EBV reactivation. We confirmed a novel EBV reactivation inhibitor, α-KG, which inhibits the expression of EBV lytic genes with CpG-containing ZREs and the latent-lytic switch by enhancing 5hmC modification. Our results demonstrate a novel mechanism of which metabolite abnormality driven by EBV controls the viral lytic reactivation through epigenetic modification. This study presents a potential strategy for blocking EBV reactivation, and provides potential targets for the diagnosis and therapy of NPC.


Subject(s)
DNA Methylation , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Virus Activation , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/genetics , Epigenesis, Genetic , Disease Progression
11.
Clin Proteomics ; 21(1): 32, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735925

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS: Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS: The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS: Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.

12.
Opt Lett ; 49(13): 3737-3740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950255

ABSTRACT

An approach for continuous tuning of on-chip optical delay with a microring resonator is proposed and demonstrated. By introducing an electro-optically tunable waveguide coupler, the bus waveguide to the resonance coupling can be effectively tuned from the under-coupling regime to the over-coupling regime. The optical delay is experimentally characterized by measuring the relative phase shift between lasers and shows a large dynamic range of delay from -600 to 600 ps and an efficient tuning of delay from -430 to -180 ps and from 40 to 240 ps by only a 5 V voltage.

13.
Liver Int ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037259

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) facilitate cell-cell interactions in the tumour microenvironment. However, standard and efficient methods to isolate tumour tissue-derived EVs are lacking, and their biological functions remain elusive. METHODS: To determine the optimal method for isolating tissue-derived EVs, we compared the characterization and concentration of EVs obtained by three previously reported methods using transmission electron microscopy, nanoparticle tracking analysis, and nanoflow analysis (Nanoflow). Additionally, the differential content of small RNAs, especially tsRNAs, between hepatocellular carcinoma (HCC) and adjacent normal liver tissues (ANLTs)-derived EVs was identified using Arraystar small RNA microarray. The targets of miRNAs and tsRNAs were predicted, and downstream functional analysis was conducted using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-negative matrix factorization and survival prediction analysis. RESULTS: A differential centrifugation-based protocol without cell cultivation (NC protocol) yielded higher EV particles and higher levels of CD9+ and CD63+ EVs compared with other isolation protocols. Interestingly, the NC protocol was also effective for isolating frozen tissue-derived EVs that were indistinguishable from fresh tissue. HCC tissues showed significantly higher EV numbers compared with ANLTs. Furthermore, we identified different types of small RNAs in HCC tissue-derived EVs, forming a unique multidimensional intercellular communication landscape that can differentiate between HCC and ANLTs. ROC analysis further showed that the combination of the top 10 upregulated small RNAs achieved better diagnostic performance (AUC = .950 [.895-1.000]). Importantly, most tsRNAs in HCC tissue-derived EVs were downregulated and mitochondria-derived, mainly involving in lipid-related metabolic reprogramming. CONCLUSION: The NC protocol was optimal for isolating EVs from HCC, especially from frozen tissues. Our study emphasized the different roles of small-RNA in regulating the HCC ecosystem, providing insights into HCC progression and potential therapeutic targets.

14.
Future Oncol ; : 1-11, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114870

ABSTRACT

WHAT IS THIS SUMMARY ABOUT?: Researchers wanted to study whether the research drug zanidatamab could help people with a type of cancer called biliary tract cancer. In some people, biliary tract cancer cells make extra copies of a gene called HER2 (also called ERBB2). This is known as being HER2-amplified. Zanidatamab is an antibody designed to destroy cancer cells that have higher-than-normal HER2 protein or gene levels. Zanidatamab is currently under research and is not yet approved for any diseases. Participants in this phase 2b clinical study had tumors that were HER2-amplified and at the advanced or metastatic stage. Participants also had cancer which had become worse after previous chemotherapy or had side effects that were too bad to continue chemotherapy. They also had to meet other requirements to be enrolled. Researchers measured the amount of HER2 protein in the tumor samples of the participants who were enrolled. There were 80 participants with tumors that were both HER2 amplified and had higher-than-normal HER2 protein amounts (considered to be 'HER2-positive'). There were 7 participants with tumors that were HER2-amplified, but had little-to-no levels of the HER2 protein (considered to be 'HER2-low'). All participants in the study were treated with zanidatamab and no other cancer treatments once every 2 weeks. WHAT ARE THE KEY TAKEAWAYS?: In the HER2-positive group, 33 of 80 (41%) participants had their tumors shrink by 30% or more of their original size. In half of these participants, their tumors did not grow for 13 months or longer. No participant in the HER2-low group had their tumors shrink by 30% or more. In total, 63 of 87 participants (72%) had at least one side effect believed to be related to zanidatamab treatment. Most side effects were mild or moderate in severity. No participant died from complications related to zanidatamab. Diarrhea was one of the more common side effects and was experienced by 32 of 87 participants (37%). Side effects related to receiving zanidatamab through the vein, such as chills, fever, or high blood pressure, were experienced by 29 of 87 participants (33%). WHAT ARE THE CONCLUSIONS REPORTED BY THE RESEARCHERS?: The results of this study support the potential for zanidatamab as a new therapy for people with HER2-positive biliary tract cancer after they had already received chemotherapy. More research is occurring to support these results.Clinical Trial Registration: NCT04466891 (HERIZON-BTC-01 study).


The HERIZON-BTC-01 study revealed zanidatamab as a potentially effective treatment for HER2-positive biliary tract cancer after standard chemotherapy fails. Read more in the lay summary by @hardingjjmd, @DrShubhamPant, and coauthors. #BiliaryTractCancer #HER2 #zanidatamab.

15.
J Nat Prod ; 87(1): 14-27, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38233978

ABSTRACT

Sorafenib was first approved as the standard treatment for advanced hepatocellular carcinoma (HCC). Despite providing an advantage in terms of patient survival, sorafenib has shown poor clinical efficacy and severe side effects after long-term treatment. Thus, combination treatment is a potential way to increase the effectiveness and reduce the dose-limiting toxicity of sorafenib. Extracts of the seeds of Annona montana have shown synergistic antitumor activity with sorafenib, and seven annonaceous acetogenins, including three new acetogenins, muricin P (2), muricin Q (3), and muricin R (4), were isolated from the extracts by bioguided fractionation and showed synergy with sorafenib. The structures of these compounds were determined using spectroscopic and chemical methods. Annonacin (1) and muricin P (2), which reduced intracellular ATP levels and promoted apoptosis, exhibited synergistic cytotoxicity with sorafenib in vitro. In vivo, annonacin (1) displayed synergistic antitumor activity by promoting tumor cell apoptosis. Moreover, the potential mechanism of annonacin (1) was predicted by transcriptomic analysis, which suggested that SLC33A1 is a potential target in HCC. Annonacin (1) might be a novel candidate for combination therapy with sorafenib against advanced HCC.


Subject(s)
Antineoplastic Agents, Phytogenic , Carcinoma, Hepatocellular , Furans , Lactones , Liver Neoplasms , Humans , Acetogenins/pharmacology , Acetogenins/chemistry , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Liver Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis
16.
Qual Life Res ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907831

ABSTRACT

PURPOSE: This study was designed to synthesize the efficacy and safety of breathing exercises in interstitial lung disease (ILD) patients by reviewing the literature and comparing the impact of different control group types, ILD subtypes, breathing exercise action modes or methods, and intervention durations on clinical efficacy. METHODS: Systematic searches were conducted across 9 electronic databases, including PubMed, to retrieve English and Chinese studies reporting on ILD patients from inception to February 12, 2024. Study selection and data extraction were independently conducted by two researchers. The quality of the included studies was assessed using the Cochrane risk of bias tool. The data were analysed using RevMan 5.4 and STATA 17.0 software. RESULTS: The search identified 25 studies. Compared to the control group, the breathing exercise group exhibited significantly improved lung function (FVC%pred: MD = 3.46, 95%CI = 1.04 to 5.88; DLCO%pred: MD = 3.20, 95% CI = 2.91 to 3.48), dyspnoea (MRC or mMRC scale: MD = - 0.50, 95%CI = - 0.77 to - 0.22), exercise capacity (6MWD: MD = 32.65, 95% CI = 14.77 to 50.53), and HRQoL (SGRQ: MD = - 6.53, 95% CI = - 8.72 to - 4.34) in ILD patients. According to the subgroup analysis, significant improvements consistent with the overall results were observed in the control group with usual treatment. Compared with the control group, breathing exercises had varying degrees of improvement in the mixed diagnostic group, known-cause group, and fibrotic group of ILD patients; breathing exercises alone significantly improved DLCO%pred, MRC (or mMRC), and SGRQ; and the improvement in breathing exercises as part of pulmonary rehabilitation (PR) was more notable. Different durations of breathing exercise could promote the efficacy of different aspects of treatment for ILD patients. CONCLUSIONS: Compared with usual treatment, breathing exercises can improve lung function, exercise capacity, and HRQoL in ILD patients, particularly without high requirements for intervention duration. The efficacy of breathing exercises varies for different ILD subtypes, and incorporating breathing exercises as part of PR can be more beneficial for ILD patients. No studies have shown significant risks for ILD patients engaging in breathing exercises.

17.
Clin Exp Pharmacol Physiol ; 51(7): e13901, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843867

ABSTRACT

Hepatocellular adenoma (HCA) represents a rare benign hepatic neoplasm with potential for malignant transformation into hepatocellular carcinoma (HCC), yet the underlying mechanism remains elusive. In this study, we investigated the genomic landscape of this process to identify therapeutic strategies for blocking malignant transformation. Using micro-detection techniques, we obtained specimens of adenoma, cancerous neoplasm and adjacent normal liver from three patients undergoing hepatic resection surgery. Whole-exome sequencing (WES) was performed, and genomic interactions between HCA and HCC components within the same tumour were evaluated using somatic variant calling, copy number variation (CNV) analysis, clonality evaluation and mutational signature analysis. Our results revealed genomic heterogeneity among patient cases, yet within each sample, HCA and HCC tissues exhibited a similar mutational landscape, suggesting a high degree of homology. Using nonnegative matrix factorization and phylogenetic trees, we identified shared and distinct mutational characteristics and uncovering necessary pathways associated with HCA-HCC malignant transformation. Remarkably, we found that HCA and HCC shared a common monoclonal origin while displaying significant genetic diversity within HCA-HCC tumours, indicating fundamental genetic connections or evolutionary pathways between the two. Moreover, elevated immune therapy-related markers in these patients suggested heightened sensitivity to immune therapy, providing novel avenues for the treatment of hepatic malignancies. This study sheds light on the genetic mechanisms underlying HCA-HCC progression, offering potential targets for therapeutic intervention and highlighting the promise of immune-based therapies in managing hepatic malignancies.


Subject(s)
Adenoma, Liver Cell , Carcinoma, Hepatocellular , Cell Transformation, Neoplastic , Exome Sequencing , Liver Neoplasms , Mutation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/genetics , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/pathology , Male , Female , DNA Copy Number Variations , Middle Aged , DNA Mutational Analysis
18.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38557424

ABSTRACT

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Lamiaceae , Humans , Amyloid beta-Peptides/pharmacology , Alzheimer Disease/drug therapy , Flavonoids/pharmacology , Complement C3/metabolism , Complement C3/pharmacology , Complement C3/therapeutic use , Neuroinflammatory Diseases , Astrocytes/metabolism , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Cytokines/metabolism , Peptide Fragments/metabolism , Peptide Fragments/toxicity
19.
BMC Pediatr ; 24(1): 293, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689235

ABSTRACT

BACKGROUND: This study reported height prediction and longitudinal growth changes in Chinese pediatric patients with acute myeloid leukemia (AML) during and after treatment and their associations with outcomes. METHODS: Changes in 88 children with AML in percentages according to the growth percentile curve for Chinese boys/girls aged 2-18/0-2 years for body mass index (BMI), height, and weight from the time of diagnosis to 2 years off therapy were evaluated. The outcomes of AML were compared among patients with different BMI levels. RESULTS: The proportion of underweight children (weight < 5th percentile) increased significantly from the initial diagnosis to the end of consolidation treatment. The proportion of patients with low BMI (BMI < 5th percentile) was highest (23.08%) during the consolidation phase, and no children were underweight, but 20% were overweight (BMI > 75th percentile) after 2 years of drug withdrawal. Unhealthy BMI at the initial diagnosis and during intensive chemotherapy leads to poorer outcomes. For height, all patients were in the range of genetic height predicted based on their parents' height at final follow-up. CONCLUSIONS: Physicians should pay more attention to the changes in height and weight of children with AML at these crucial treatment stages and intervene in time.


Subject(s)
Body Height , Body Mass Index , Body Weight , Leukemia, Myeloid, Acute , Humans , Male , Female , Child , Child, Preschool , Adolescent , Longitudinal Studies , Thinness , China , Retrospective Studies
20.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928098

ABSTRACT

Aphidius gifuensis is the dominant parasitic natural enemy of aphids. Elucidating the molecular mechanism of host recognition of A. gifuensis would improve its biological control effect. Chemosensory proteins (CSPs) play a crucial role in insect olfactory systems and are mainly involved in host localization. In this study, a total of nine CSPs of A. gifuensis with complete open reading frames were identified based on antennal transcriptome data. Phylogenetic analysis revealed that AgifCSPs were mainly clustered into three subgroups (AgifCSP1/2/7/8, AgifCSP3/9, and AgifCSP4/5/6). AgifCSP2/5 showed high expression in the antennae of both sexes. Moreover, AgifCSP5 was found to be specifically expressed in the antennae. In addition, fluorescent binding assays revealed that AifCSP5 had greater affinities for 7 of 32 volatile odor molecules from various sources. Molecular docking and site-directed mutagenesis results revealed that the residue at which AgifCSP5 binds to these seven plant volatiles is Tyr75. Behavior tests further confirmed that trans-2-nonenal, one of the seven active volatiles in the ligand binding test, significantly attracted female adults at a relatively low concentration of 10 mg/mL. In conclusion, AgifCSP5 may be involved in locating aphid-infested crops from long distances by detecting and binding trans-2-nonenal. These findings provide a theoretical foundation for further understanding the olfactory recognition mechanisms and indirect aphid localization behavior of A. gifuensis from long distances by first identifying the host plant of aphids.


Subject(s)
Aphids , Insect Proteins , Phylogeny , Animals , Aphids/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Female , Male , Host-Parasite Interactions/genetics , Arthropod Antennae/metabolism , Molecular Docking Simulation , Amino Acid Sequence , Receptors, Odorant/genetics , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Wasps/genetics , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL