Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
Add more filters

Publication year range
1.
Plant Cell ; 34(3): 1038-1053, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34919720

ABSTRACT

Starch is the main energy storage carbohydrate in plants and serves as an essential carbon storage molecule for plant metabolism and growth under changing environmental conditions. The TARGET of RAPAMYCIN (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrient, hormone, and stress signaling to regulate growth in all eukaryotes. Here, we demonstrate that TOR promotes guard cell starch degradation and induces stomatal opening in Arabidopsis thaliana. Starvation caused by plants growing under short photoperiod or low light photon irradiance, as well as inactivation of TOR, impaired guard cell starch degradation and stomatal opening. Sugar and TOR induce the accumulation of ß-AMYLASE1 (BAM1), which is responsible for starch degradation in guard cells. The plant steroid hormone brassinosteroid and transcription factor BRASSINAZOLE-RESISTANT1 play crucial roles in sugar-promoted expression of BAM1. Furthermore, sugar supply induced BAM1 accumulation, but TOR inactivation led to BAM1 degradation, and the effects of TOR inactivation on BAM1 degradation were abolished by the inhibition of autophagy and proteasome pathways or by phospho-mimicking mutation of BAM1 at serine-31. Such regulation of BAM1 activity by sugar-TOR signaling allows carbon availability to regulate guard cell starch metabolism and stomatal movement, ensuring optimal photosynthesis efficiency of plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Hormones/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sirolimus , Starch/metabolism , Sugars/metabolism
2.
Chem Soc Rev ; 53(15): 7828-7874, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38962926

ABSTRACT

Rechargeable sodium-ion batteries (SIBs) have emerged as an advanced electrochemical energy storage technology with potential to alleviate the dependence on lithium resources. Similar to Li-ion batteries, the cathode materials play a decisive role in the cost and energy output of SIBs. Among various cathode materials, Na layered transition-metal (TM) oxides have become an appealing choice owing to their facile synthesis, high Na storage capacity/voltage that are suitable for use in high-energy SIBs, and high adaptivity to the large-scale manufacture of Li layered oxide analogues. However, going from the lab to the market, the practical use of Na layered oxide cathodes is limited by the ambiguous understanding of the fundamental structure-performance correlation of cathode materials and lack of customized material design strategies to meet the diverse demands in practical storage applications. In this review, we attempt to clarify the fundamental misunderstandings by elaborating the correlations between the electron configuration of the critical capacity-contributing elements (e.g., TM cations and oxygen anion) in oxides and their influence on the Na (de)intercalation (electro)chemistry and storage properties of the cathode. Subsequently, we discuss the issues that hinder the practical use of layered oxide cathodes, their origins and the corresponding strategies to address their issues and accelerate the target-oriented research and development of cathode materials. Finally, we discuss several new Na layered cathode materials that show prospects for next-generation SIBs, including layered oxides with anion redox and high entropy and highlight the use of layered oxides as cathodes for solid-state SIBs with higher energy and safety. In summary, we aim to offer insights into the rational design of high-performance Na layered oxide cathode materials towards the practical realization of sustainable electrochemical energy storage at a low cost.

3.
J Am Chem Soc ; 2024 Oct 19.
Article in English | MEDLINE | ID: mdl-39425697

ABSTRACT

LiCl is a promising solid electrolyte, providing it possesses high ionic conductivity. Numerous efforts have been made to enhance its ionic conductivity through aliovalent doping. However, aliovalent substitution changes the intrinsic structure of LiCl, compromising its cost-effectiveness and electrochemical stability. Here, we report nanocrystalline LiCl embedded in amorphous AlOCl compounds with a heterogeneous structure to enhance its ionic conductivity. Nanocrystallization enlarges the LiCl unit cell, while amorphization facilitates interfacial ion transport. As a result, the amorphous AlOCl-modified LiCl nanocrystal (AlOCl-nanoLiCl) demonstrates a high ionic conductivity of 1.02 mS cm-1, which is 5 orders of magnitude higher than that of LiCl. Additionally, it exhibits high oxidative stability, low cost ($19.87 US kg-1), and low Young's modulus (2-3 GPa). When AlOCl-nanoLiCl is coupled with Li-rich cathodes (Li1.17Mn0.55Ni0.24Co0.05O2, 4.8 V vs Li+/Li), all-solid-state batteries exhibit remarkable long-term cycling stability (>1000 cycles). This work presents a novel strategy to enhance the ionic conductivity of alkaline chlorides without compromising their intrinsic advantages.

4.
BMC Med ; 22(1): 384, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267060

ABSTRACT

BACKGROUND: Extending the dosing interval of a primary series of mRNA COVID-19 vaccination has been employed to reduce myocarditis risk in adolescents, but previous evaluation of impact on vaccine effectiveness (VE) is limited to risk after second dose. METHODS: We quantified the impact of the dosing interval based on case notifications and vaccination uptake in Hong Kong from January to April 2022, based on calendar-time proportional hazards models and matching approaches. RESULTS: We estimated that the hazard ratio (HR) and odds ratio (OR) of infections after the second dose for extended (28 days or more) versus regular (21-27 days) dosing intervals ranged from 0.86 to 0.99 from calendar-time proportional hazards models, and from 0.85 to 0.87 from matching approaches, respectively. Adolescents in the extended dosing groups (including those who did not receive a second dose in the study period) had a higher hazard of infection than those with a regular dosing interval during the intra-dose period (HR 1.66; 95% CI 1.07, 2.59; p = 0.02) after the first dose. CONCLUSIONS: Implementing an extended dosing interval should consider multiple factors including the degree of myocarditis risk, the degree of protection afforded by each dose, and the extra protection achievable using an extended dosing interval.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , Humans , Adolescent , Male , COVID-19/prevention & control , COVID-19/epidemiology , Female , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Hong Kong/epidemiology , SARS-CoV-2/immunology , Immunization Schedule , Myocarditis/prevention & control , Myocarditis/epidemiology , Child , mRNA Vaccines , Proportional Hazards Models , Vaccination/methods
5.
Plant Biotechnol J ; 22(7): 1989-2006, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412139

ABSTRACT

Regulation of grain size is a crucial strategy for improving the crop yield and is also a fundamental aspect of developmental biology. However, the underlying molecular mechanisms governing grain development in wheat remain largely unknown. In this study, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor, TabHLH489, which is tightly associated with grain length through genome-wide association study and map-based cloning. Knockout of TabHLH489 and its homologous genes resulted in increased grain length and weight, whereas the overexpression led to decreased grain length and weight. TaSnRK1α1, the α-catalytic subunit of plant energy sensor SnRK1, interacted with and phosphorylated TabHLH489 to induce its degradation, thereby promoting wheat grain development. Sugar treatment induced TaSnRK1α1 protein accumulation while reducing TabHLH489 protein levels. Moreover, brassinosteroid (BR) promotes grain development by decreasing TabHLH489 expression through the transcription factor BRASSINAZOLE RESISTANT1 (BZR1). Importantly, natural variations in the promoter region of TabHLH489 affect the TaBZR1 binding ability, thereby influencing TabHLH489 expression. Taken together, our findings reveal that the TaSnRK1α1-TabHLH489 regulatory module integrates BR and sugar signalling to regulate grain length, presenting potential targets for enhancing grain size in wheat.


Subject(s)
Brassinosteroids , Edible Grain , Gene Expression Regulation, Plant , Plant Proteins , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Brassinosteroids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Sugars/metabolism , Signal Transduction/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Genome-Wide Association Study
6.
Plant Cell ; 33(9): 3004-3021, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34129038

ABSTRACT

Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH IBH1 (HBI1) and its three closest homologs (HBIs) positively regulate nitrate signaling in Arabidopsis thaliana. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling. Mutations in HBIs result in the reduced effects of nitrate on plant growth and ∼22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2 cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Homeostasis , Nitrates/metabolism , Reactive Oxygen Species , Signal Transduction , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
7.
Prev Med ; 184: 107999, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735587

ABSTRACT

BACKGROUND: Limited research explores the impact of body mass index (BMI) change on osteoporosis, regarding the role of lipid metabolism. We aimed to cross-sectionally investigate these relationships in 820 Chinese participants aged 55-65 from the Taizhou Imaging Study. METHODS: We used the baseline data collected between 2013 and 2018. T-score was calculated by standardizing bone mineral density and was used for osteoporosis and osteopenia diagnosis. Multinomial logistic regression was used to examine the effect of BMI change on bone health status. Multivariable linear regression was employed to identify the metabolites corrected with BMI change and T-score. Exploratory factor analysis (EFA) and mediation analysis were conducted to ascertain the involvement of the metabolites. RESULTS: BMI increase served as a protective factor against osteoporosis (OR = 0.79[0.71-0.88], P-value<0.001) and osteopenia (OR = 0.88[0.82-0.95], P-value<0.001). Eighteen serum metabolites were associated with both BMI change and T-score. Specifically, high-density lipoprotein (HDL) substructures demonstrated negative correlations (ß = -0.08 to -0.06 and - 0.12 to -0.08, respectively), while very low-density lipoprotein (VLDL) substructions showed positive correlations (ß = 0.09 to 0.10 and 0.10 to 0.11, respectively). The two lipid factors (HDL and VLDL) extracted by EFA acted as mediators between BMI change and T-score (Prop. Mediated = 8.16% and 10.51%, all P-value<0.01). CONCLUSION: BMI gain among Chinese aged 55-65 is beneficial for reducing the risk of osteoporosis. The metabolism of HDL and VLDL partially mediates the effect of BMI change on bone loss. Our research offers novel insights into the prevention of osteoporosis, approached from the perspective of weight management and lipid metabolomics.


Subject(s)
Body Mass Index , Bone Density , Lipid Metabolism , Osteoporosis , Humans , Female , Male , Bone Density/physiology , Middle Aged , Cross-Sectional Studies , China/epidemiology , Aged , Bone Diseases, Metabolic
8.
Pharmacoepidemiol Drug Saf ; 33(10): e70036, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39420659

ABSTRACT

PURPOSE: The evidence of the neuropsychiatric effects associated with fluoroquinolones is mainly supported by case reports. Population-based evidence remains largely limited. We aimed to investigate the association between the use of fluoroquinolones and hospitalization or Accident & Emergency department visits for acute neuropsychiatric events using a self-controlled case series (SCCS) and active comparator to reduce confounding. METHODS: We conducted a SCCS with a recently described active comparator design using all public outpatient clinics, hospitalization, and Accident and Emergency department records from the Clinical Data Analysis and Reporting System, Hong Kong from 2001 to 2013. Among 166 325 people with an oral fluoroquinolone prescription, 4287 people who had an incident neuropsychiatric event were included. We then estimated the incidence rate ratio (IRR) of acute neuropsychiatric events during periods before and after fluoroquinolone prescription, versus baseline. We repeated the analysis for amoxicillin/clavulanic acid users as an active comparator. We then estimated the comparator-adjusted estimates by dividing the IRR for fluoroquinolone by the IRR for amoxicillin/clavulanic acid. The primary outcome was neuropsychiatric events. Secondary outcomes were psychotic events and cognitive impairment. RESULTS: An increased risk of neuropsychiatric events was observed in the current use of fluoroquinolone [IRR: 2.11 (95% confidence interval (CI): 1.58-2.83)] and 1-7 days after the end of fluoroquinolone prescription [IRR: 1.90 (95% CI: 1.30-2.75)] versus baseline. No increased risk was observed in other risk periods versus baseline. Similar patterns were observed in the current use of amoxicillin/clavulanic acid [IRR: 1.92 (95% CI: 1.19-3.11)] and 1-7 days after the end of fluoroquinolone prescription [IRR: 1.81 (95% CI: 1.11-2.97)] versus baseline. Similar results were found for secondary outcomes. Using the active comparator design, comparator-adjusted estimates were 1.10 (95% CI: 0.63-1.93) in current use of fluoroquinolones and 1.05 (95% CI: 0.57-1.95) in 1-7 days postexposure to fluoroquinolones versus baseline. CONCLUSIONS: Although our study showed a higher incidence of neuropsychiatric events in the current use of fluoroquinolones and 7 days after the end of fluoroquinolones prescriptions compared with baseline, a similar temporal pattern was also found for amoxicillin/clavulanic acid users. Using amoxicillin/clavulanic acid as the active comparator, we found no difference in the risk of neuropsychiatric events associated with fluoroquinolone compared with baseline. Therefore, the risk of neuropsychiatric events may not need to influence the decision to prescribe either fluoroquinolones or amoxicillin/clavulanic acid based on the evidence in this study.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Humans , Fluoroquinolones/adverse effects , Fluoroquinolones/administration & dosage , Female , Male , Middle Aged , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/administration & dosage , Administration, Oral , Aged , Hong Kong/epidemiology , Adult , Hospitalization/statistics & numerical data , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/chemically induced , Psychoses, Substance-Induced/epidemiology , Psychoses, Substance-Induced/etiology , Amoxicillin-Potassium Clavulanate Combination/adverse effects , Amoxicillin-Potassium Clavulanate Combination/administration & dosage , Emergency Service, Hospital/statistics & numerical data , Mental Disorders/epidemiology , Mental Disorders/chemically induced , Mental Disorders/drug therapy , Incidence
9.
BMC Geriatr ; 24(1): 303, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561655

ABSTRACT

BACKGROUND: Gait disturbance is common in older adults with vascular diseases. However, how carotid atherosclerosis affects gait remains poorly understood. The objectives were to investigate the associations between carotid intima-media thickness and specific gait performances and explore the potential role of brain structure in mediating these associations. METHODS: A cross-sectional analysis of data from the Taizhou Imaging Study was conducted, including 707 individuals who underwent both gait and carotid ultrasound examinations. Gait assessments include the Timed-Up-and-Go test, the Tinetti test, and quantitative gait assessment using a wearable device. Quantitative parameters were summarized into independent gait domains with factor analysis. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the volumes of fifteen brain regions related to motor function (primary motor, sensorimotor), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules), executive control function (dorsolateral prefrontal cortex, anterior cingulate), memory (hippocampus, entorhinal cortex), motor imagery (precuneus, parahippocampus, posterior cingulated cortex), and balance (basal ganglia: pallidum, putamen, caudate, thalamus) were computed using FreeSurfer and the Desikan-Killiany atlas. Mediation analysis was conducted with carotid intima-media thickness as the predictor and mobility-related brain regions as mediators. RESULTS: Carotid intima-media thickness was found to be associated with the Timed-Up-and-Go performance (ß = 0.129, p = 0.010) as well as gait performances related to pace (ß=-0.213, p < 0.001) and symmetry (ß = 0.096, p = 0.045). Besides, gait performances were correlated with mobility-related brain regions responsible for motor, visuospatial attention, executive control, memory, and balance (all FDR < 0.05). Notably, significant regions differed depending on the gait outcomes measured. The primary motor (41.9%), sensorimotor (29.3%), visuospatial attention (inferior posterior parietal lobules, superior posterior parietal lobules) (13.8%), entorhinal cortex (36.4%), and motor imagery (precuneus, parahippocampus, posterior cingulated cortex) (27.3%) mediated the association between increased carotid intima-media thickness and poorer Timed-Up-and-Go performance. For the pace domain, the primary motor (37.5%), sensorimotor (25.8%), visuospatial attention (12.3%), entorhinal cortex (20.7%), motor imagery (24.9%), and balance (basal ganglia: pallidum, putamen, caudate, thalamus) (11.6%) acted as mediators. CONCLUSIONS: Carotid intima-media thickness is associated with gait performances, and mobility-related brain volume mediates these associations. Moreover, the distribution of brain regions regulating mobility varies in the different gait domains. Our study adds value in exploring the underlying mechanisms of gait disturbance in the aging population.


Subject(s)
Carotid Intima-Media Thickness , Postural Balance , Humans , Aged , Cross-Sectional Studies , Time and Motion Studies , Brain/pathology , Gait/physiology
10.
World J Surg Oncol ; 22(1): 89, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600579

ABSTRACT

PURPOSE: We aimed to compare the therapeutic effect of radiotherapy (RT) plus systemic therapy (ST) with RT alone in patients with simple brain metastasis (BM) after first-line treatment of limited-stage small cell lung cancer (LS-SCLC). METHODS: The patients were treated at a single center from January 2011 to January 2022. BM only without metastases to other organs was defined as simple BM. The eligible patients were divided into RT alone (monotherapy arm) and RT plus ST (combined therapy arm). Univariate and multivariate Cox proportional hazards analyses were used to examine factors associated with increased risk of extracranial progression. After 1:1 propensity score matching analysis, two groups were compared for extracranial progression-free survival (ePFS), PFS, overall survival (OS), and intracranial PFS (iPFS). RESULTS: 133 patients were identified and 100 were analyzed (monotherapy arm: n = 50, combined therapy arm: n = 50). The ePFS of the combined therapy was significantly longer than that of the monotherapy, with a median ePFS of 13.2 months (95% CI, 6.6-19.8) in combined therapy and 8.2 months (95% CI, 5.7-10.7) in monotherapy (P = 0.04). There were no statistically significant differences in PFS (P = 0.057), OS (P = 0.309), or iPFS (P = 0.448). Multifactorial analysis showed that combined therapy was independently associated with better ePFS compared with monotherapy (HR = 0.617, P = 0.034); more than 5 BMs were associated with worse ePFS compared with 1-5 BMs (HR = 1.808, P = 0.012). CONCLUSIONS: Compared with RT alone, combined therapy improves ePFS in patients with simple BM after first-line treatment of LS-SCLC. Combined therapy and 1-5 BMs reduce the risk of extracranial recurrence.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/radiotherapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Retrospective Studies , Brain Neoplasms/radiotherapy , Chemoradiotherapy
11.
BMC Med Educ ; 24(1): 1190, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39438914

ABSTRACT

BACKGROUND: Prenatal ultrasound is the preferred modality for diagnosing fetal congenital heart disease. Given issues of physician proficiency and hospital distribution, we propose a dynamic sequential cross-sectional scanning (SCS) to explore the feasibility of cardiac screening by sonographers with less than 5 years of experience in ultrasound. MATERIALS AND METHODS: Twenty residents were randomly divided into two groups, receiving training in the American Institute of Ultrasound in Medicine (AIUM) fetal echocardiography and the SCS method. According to the needs of training, the professional staff developed the theoretical knowledge question bank, the CHD ultrasonic video disease bank, and the assessment scale. Trainees completed the pre-training examination, theory and skill operation training, and post-training assessment. For the two groups, the theoretical knowledge, skill operation and disease diagnosis were analyzed statistically before and after training. RESULTS: After training, the trainees in both groups had significantly improved knowledge and diagnostic abilities, their diagnostic thinking about CHD was clear, and they could identify major or even all structural abnormalities and make a definite diagnosis. In terms of skill operation, both groups could complete all required scanning within the specified time. The scanning time of the SCS group was significantly lower than that of the AIUM group, and the effect of the receptor site in the AIUM group was significantly higher than that in the SCS group. CONCLUSION: SCS can be used as a new rapid fetal cardiac scanning method and try to popularize among echocardiographer.


Subject(s)
Clinical Competence , Heart Defects, Congenital , Ultrasonography, Prenatal , Humans , Heart Defects, Congenital/diagnostic imaging , Female , Pregnancy , Internship and Residency , Echocardiography
12.
Sensors (Basel) ; 24(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339544

ABSTRACT

The remarkably long distances covered by deep space probes result in extremely weak downlink signals, which poses great challenges for ground measurement systems. In the current climate, improving the comprehensive utilization of downlink signal power to increase the detection distance or enhance the measurement accuracy is of great significance in deep space exploration. Facing this problem, we analyze the delta Differential One-way Range (ΔDOR) error budget of the X-band of the China Deep Space Network (CDSN). Then, we propose a novel interferometry method that detunes one group of DOR beacons and reuses the clock components of regenerative pseudo-code ranging signals for interferometry delay estimation. The primary advantage of this method is its ability to enhance the power utilization efficiency of downlink signals, thereby facilitating more efficient tracking and measurement without necessitating additional design requirements for deep space transponders. Finally, we analyze and verify the correctness and effectiveness of our proposed method using measured data from CDSN. Our results indicate that the proposed method can save approximately 13% of the downlink signal power and increase the detection distance by about 6.25% using typical modulation parameters. Furthermore, if the relative power of other signal components remains unchanged, the power of the DOR tone can be directly increased by more than 100%, improving the deep space exploration ability more significantly.

13.
Environ Monit Assess ; 196(9): 803, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120619

ABSTRACT

High-quality development of water resources supports high-quality socio-economic development. High-quality development connects high-quality life, and clarifying the key management contents of small watersheds plays an important role in building ecologically clean small watersheds and promoting regional production and life. Previous research on pollution loads has focused on examining the impact of various external drivers on pollution loads but still lacks research on the impact of changes in pollution sources themselves on pollution loads. In this study, sensitivity analysis was used to determine the impact of changes from different sources on the total pollution loads, which can recognize the critical pollution sources. We first employed the pollutant discharge coefficient method to quantify non-point source pollution loads in the small watershed in the upstream Tuojiang River basin from 2010 to 2021. Then, combination sensitivity analysis with Getis-Ord Gi* was used to identify the critical sources and their crucial areas at the global, districts (counties), and towns (streets) scales, respectively. The results indicate: (1) The pollution loads of COD, NH3-N, TN, and TP all show a decreasing trend, reducing by 18.3%, 16.2%, 18.6%, and 28.1% from 2010 to 2021, respectively; (2) Livestock and poultry breeding pollution source is the most critical source for majority areas across watershed; (3) High-risk areas are mainly concentrated in Jingyang district and its subordinate towns (streets). There is a trend of low-pollution risk areas transitioning to high-pollution risk areas, with high-risk areas predominantly concentrated in the southeast and exhibiting a noticeable phenomenon of pollution load spilling around. This study can promote other similar small watersheds, holding significant importance for non-point source pollution control in small watersheds.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , China , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Risk Assessment , Water Pollution, Chemical/statistics & numerical data , Nitrogen/analysis , Phosphorus/analysis , Spatio-Temporal Analysis
14.
Environ Monit Assess ; 196(9): 856, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196401

ABSTRACT

Rapid socio-economic development has led to many water environmental issues in small watersheds such as non-compliance with water quality standards, complex pollution sources, and difficulties in water environment management. To achieve a quantitative evaluation of water quality, identify pollution sources, and implement refined management in small watersheds, this study collected monthly seven water quality indexes of four monitoring points from 2010 to 2023, and ten water quality indexes of 23 sampling points in the Shiting River and Mianyuan River which are tributaries of the Tuojiang River Basin. Then, water quality evaluation and pollution source analysis were conducted from both temporal and spatial perspectives using the Water Quality Index (WQI) method, the Absolute Principal Component Scores/Multiple Linear Regression (APCS-MLR) method, and the Positive Matrix Factorization (PMF) receptor modeling technique. The results indicated that except for total nitrogen (TN), the concentrations of other water quality indexes exhibited a decreasing trend, and all were divided into two obvious stages before and after 2016. Furthermore, the proportion of water quality grade of Good and above increased from 73.96 to 84.94% from 2010-2015 to 2016-2023, and the water quality grade of Good and above from upstream to downstream dropped from 100 to 23.33%. From the temporal scale, four and five pollution sources were identified in the first and second stages, respectively. The distinct TN pollutant is mainly affected by agricultural non-point sources (NPS), whose impact is enhanced from 17.76 to 78.31%. Total phosphorus (TP) was affected by the phosphorus chemical industry, whose contribution gradually weakened from 50.8 to 24.9%. From a spatial perspective, four and five pollution sources were identified in the upstream and downstream, respectively. Therefore, even though there are some limitations due to the data availability of water monitory and hydrology data, the proposed research framework of this study can be applied to the water environmental management of other similar watersheds.


Subject(s)
Environmental Monitoring , Phosphorus , Rivers , Water Pollutants, Chemical , Water Quality , China , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Rivers/chemistry , Phosphorus/analysis , Nitrogen/analysis , Water Pollution, Chemical/statistics & numerical data
15.
Saudi Pharm J ; 32(2): 101934, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38223203

ABSTRACT

Purpose: To investigate the pharmacokinetics and tissue distribution of VGB racemate and its single enantiomers, and explore the potential of clinic development for single enantiomer S-VGB. Methods: In the pharmacokinetics study, male Sprague-Dawley rats were gavaged with VGB racemate or its single enantiomers dosing 50, 100 or 200 mg/kg, and the blood samples were collected during 12 h at regular intervals. In the experiment of tissue distribution, VGB and its single enantiomers were administered intravenously dosing 200 mg/kg, and the tissues including heart, liver, spleen, lung and kidney, eyes, hippocampus, and prefrontal cortex were separated at different times. The concentrations of R-VGB and S-VGB in the plasma and tissues were measured using HPLC. Results: Both S-VGB and R-VGB could be detected in the plasma of rats administered with VGB racemate, reaching Cmax at approximately 0.5 h with t1/2 2-3 h. There was no significant pharmacokinetic difference between the two enantiomers when VGB racemate was given 200 mg/kg and 100 mg/kg. However, when given at the dose of 50 mg/kg, S-VGB presented a shorter t1/2 and a higher Cl/F than R-VGB, indicating a faster metabolism of S-VGB. Furthermore, when single enantiomer was administered respectively, S-VGB presented a slower metabolism than R-VGB, as indicated by a longer t1/2 and MRT but a lower Cmax. Moreover, compared with the VGB racemate, the single enantiomers S-VGB and R-VGB had shorter t1/2 and MRT, higher Cmax and AUC/D, and lower Vz/F and Cl/F, indicating the stronger oral absorption and faster metabolism of single enantiomer. In addition, regardless of VGB racemate administration or single enantiomer administration, S-VGB and R-VGB had similar characteristics in tissue distribution, and the content of S-VGB in hippocampus, prefrontal cortex and liver was much higher than that of R-VGB. Conclusions: Although there is no transformation between S-VGB and R-VGB in vivo, those two enantiomers display certain disparities in the pharmacokinetics and tissue distribution, and interact with each other. These findings might be a possible interpretation for the pharmacological and toxic effects of VGB and a potential direction for the development and optimization of the single enantiomer S-VGB.

16.
Angew Chem Int Ed Engl ; 63(32): e202406557, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38798154

ABSTRACT

The surge in lithium-ion batteries has heightened concerns regarding metal resource depletion and the environmental impact of spent batteries. Battery recycling has become paramount globally, but conventional techniques, while effective at extracting transition metals like cobalt and nickel from cathodes, often overlook widely used spent LiFePO4 due to its abundant and low-cost iron content. Direct regeneration, a promising approach for restoring deteriorated cathodes, is hindered by practicality and cost issues despite successful methods like solid-state sintering. Hence, a smart prelithiation separator based on surface-engineered sacrificial lithium agents is proposed. Benefiting from the synergistic anionic and cationic redox, the prelithiation separator can intelligently release or intake active lithium via voltage regulation. The staged lithium replenishment strategy was implemented, successfully restoring spent LiFePO4's capacity to 163.7 mAh g-1 and a doubled life. Simultaneously, the separator can absorb excess active lithium up to approximately 600 mAh g-1 below 2.5 V to prevent over-lithiation of the cathode This innovative, straightforward, and cost-effective strategy paves the way for the direct regeneration of spent batteries, expanding the possibilities in the realm of lithium-ion battery recycling.

17.
Diabetologia ; 66(9): 1693-1704, 2023 09.
Article in English | MEDLINE | ID: mdl-37391625

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to estimate the long-term health and economic consequences of improved risk factor control in German adults with type 2 diabetes. METHODS: We used the UK Prospective Diabetes Study Outcomes Model 2 to project the patient-level health outcomes and healthcare costs of people with type 2 diabetes in Germany over 5, 10 and 30 years. We parameterised the model using the best available data on population characteristics, healthcare costs and health-related quality of life from German studies. The modelled scenarios were: (1) a permanent reduction of HbA1c by 5.5 mmol/mol (0.5%), of systolic BP (SBP) by 10 mmHg, or of LDL-cholesterol by 0.26 mmol/l in all patients, and (2) achievement of guideline care recommendations for HbA1c (≤53 mmol/mol [7%]), SBP (≤140 mmHg) or LDL-cholesterol (≤2.6 mmol/l) in patients who do not meet the recommendations. We calculated nationwide estimates using age- and sex-specific quality-adjusted life year (QALY) and cost estimates, type 2 diabetes prevalence and population size. RESULTS: Over 10 years, a permanent reduction of HbA1c by 5.5 mmol/mol (0.5%), SBP by 10 mmHg or LDL-cholesterol by 0.26 mmol/l led to per-person savings in healthcare expenditures of €121, €238 and €34, and 0.01, 0.02 and 0.015 QALYs gained, respectively. Achieving guideline care recommendations for HbA1c, SBP or LDL-cholesterol could reduce healthcare expenditure by €451, €507 and €327 and gained 0.03, 0.05 and 0.06 additional QALYs in individuals who did not meet the recommendations. Nationally, achieving guideline care recommendations for HbA1c, SBP and LDL-cholesterol could reduce healthcare costs by over €1.9 billion. CONCLUSIONS/INTERPRETATION: Sustained improvements in HbA1c, SBP and LDL-cholesterol control among diabetes patients in Germany can lead to substantial health benefits and reduce healthcare expenditures.


Subject(s)
Diabetes Mellitus, Type 2 , Male , Female , Humans , Adult , Hypoglycemic Agents , Blood Pressure , Glucose , Quality of Life , Prospective Studies , Glycated Hemoglobin , Cholesterol, LDL
18.
Clin Infect Dis ; 76(3): e291-e298, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35675702

ABSTRACT

BACKGROUND: Observable symptoms of Bell's palsy following vaccinations arouse concern over the safety profiles of novel coronavirus disease 2019 (COVID-19) vaccines. However, there are only inconclusive findings on Bell's palsy following messenger (mRNA) COVID-19 vaccination. This study aims to update the previous analyses on the risk of Bell's palsy following mRNA (BNT162b2) COVID-19 vaccination. METHODS: This study included cases aged ≥16 years with a new diagnosis of Bell's palsy within 28 days after BNT162b2 vaccinations from the population-based electronic health records in Hong Kong. Nested case-control and self-controlled case series (SCCS) analyses were used, where the association between Bell's palsy and BNT162b2 was evaluated using conditional logistic and Poisson regression, respectively. RESULTS: Totally 54 individuals were newly diagnosed with Bell's palsy after BNT162b2 vaccinations. The incidence of Bell's palsy was 1.58 (95% confidence interval [CI], 1.19-2.07) per 100 000 doses administered. The nested case-control analysis showed significant association between BNT162b2 vaccinations and Bell's palsy (adjusted odds ratio [aOR], 1.543; 95% CI, 1.123-2.121), with up to 1.112 excess events per 100 000 people who received 2 doses of BNT162b2. An increased risk of Bell's palsy was observed during the first 14 days after the second dose of BNT162b2 in both nested case-control (aOR, 2.325; 95% CI, 1.414-3.821) and SCCS analysis (adjusted incidence rate ratio, 2.44; 95% CI, 1.32-4.50). CONCLUSIONS: There was an overall increased risk of Bell's palsy following BNT162b2 vaccination, particularly within the first 14 days after the second dose, but the absolute risk was very low.


Subject(s)
Bell Palsy , COVID-19 Vaccines , COVID-19 , Facial Paralysis , Humans , Bell Palsy/epidemiology , Bell Palsy/etiology , BNT162 Vaccine , Case-Control Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/complications , COVID-19 Vaccines/adverse effects , Research Design , Vaccination/adverse effects
19.
J Am Chem Soc ; 145(47): 25643-25652, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37970704

ABSTRACT

Anode-free rechargeable sodium batteries represent one of the ultimate choices for the 'beyond-lithium' electrochemical storage technology with high energy. Operated based on the sole use of active Na ions from the cathode, the anode-free battery is usually reported with quite a limited cycle life due to unstable electrolyte chemistry that hinders efficient Na plating/stripping at the anode and high-voltage operation of the layered oxide cathode. A rational design of the electrolyte toward improving its compatibility with the electrodes is key to realize the battery. Here, we show that by refining the volume ratio of two conventional linear ether solvents, a binary electrolyte forms a cation solvation structure that facilitates flat, dendrite-free, planar growth of Na metal on the anode current collector and that is adaptive to high-voltage Na (de)intercalation of P2-/O3-type layered oxide cathodes and oxidative decomposition of the Na2C2O4 supplement. Inorganic fluorides, such as NaF, show a major influence on the electroplating pattern of Na metal and effective passivation of plated metal at the anode-electrolyte interface. Anode-free batteries based on the refined electrolyte have demonstrated high coulombic efficiency, long cycle life, and the ability to claim a cell-level specific energy of >300 Wh/kg.

20.
Neurobiol Dis ; 180: 106081, 2023 05.
Article in English | MEDLINE | ID: mdl-36931530

ABSTRACT

The gut microbiota is reportedly involved in neurodegenerative disorders, and exploration of differences in the gut microbiota in different cognitive status could provide clues for early detection and intervention in cognitive impairment. Here, we used data from the Taizhou Imaging Study (N = 516), a community-based cohort, to compare the overall structure of the gut microbiota at the species level through metagenomic sequencing, and to explore associations with cognition. Interestingly, bacteria capable of producing short-chain fatty acids (SCFAs), such as Bacteroides massiliensis, Bifidobacterium pseudocatenulatum, Fusicatenibacter saccharivorans and Eggerthella lenta, that can biotransform polyphenols, were positively associated with better cognitive performance (p < 0.05). Although Diallister invisus and Streptococcus gordonii were not obviously related to cognition, the former was dominant in individuals with mild cognitive impairment (MCI), while the later was more abundant in cognitively normal (CN) than MCI groups, and positively associated with cognitive performance (p < 0.05). Functional analysis further supported a potential role of SCFAs and lactic acid in the association between the gut microbiota and cognition. The significant associations persisted after accounting for dietary patterns. Collectively, our results demonstrate an association between the gut microbiota and cognition in the general population, indicating a potential role in cognitive impairment. The findings provide clues for microbiome biomarkers of dementia, and insight for the prevention and treatment of dementia.


Subject(s)
Cognitive Dysfunction , Dementia , Humans , Aged , Independent Living , Cognition , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL