Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 241: 124655, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37121412

ABSTRACT

Molluscs constitute the second largest phylum of animals in the world, and shell colour is one of their most important phenotypic characteristics. In this study, we found among three folds on the mantle edge of oyster, only the outer fold had the same colour as the shell. Transcriptome and mantle cutting experiment indicated that the outer fold may be mainly reflected in chitin framework formation and biomineralisation. There were obvious differences in SEM structure and protein composition between the black and white shell periostraca. The black shell periostraca had more proteins related to melanin biosynthesis and chitin binding. Additionally, we identified an uncharacterized protein gene (named as CgCBP) ultra-highly expressed only in the black outer fold and confirmed its function of chitin-binding and CaCO3 precipitation promoting. RNAi also indicated that CgCBP knockdown could change the structure of shell periostracum and reduce shell pigmentation. All these results suggest that the mantle outer fold plays multiple key roles in shell periostraca bioprocessing, and shell periostracum structure affected by chitin-binding protein is functionally correlated with shell pigmentation. The investigation of oyster shell periostracum structure and shell colour will provide a better understanding in pigmentation during biological mineralisation in molluscs.


Subject(s)
Crassostrea , Transcriptome , Animals , Color , Proteins/metabolism , Biomineralization , Calcification, Physiologic/genetics , Calcium Carbonate/metabolism , Animal Shells/metabolism
2.
Front Immunol ; 13: 869845, 2022.
Article in English | MEDLINE | ID: mdl-35422814

ABSTRACT

IKK proteins are key signaling molecules in the innate immune system of animals, and act downstream of pattern recognition receptors. However, research on IKKs in invertebrates, especially marine mollusks, remains scarce. In this study, we cloned CfIKK1 gene from the Zhikong scallop (Chlamys farreri) and studied its function and the signaling it mediates. The open reading frame of CfIKK1 was 2190 bp and encoded 729 amino acids. Phylogenetic analysis showed that CfIKK1 belonged to the invertebrate IKKα/IKKß family. Quantitative real-time PCR analysis revealed the ubiquitous expression of CfIKK1 mRNA in all scallop tissues and challenge with lipopolysaccharide, peptidoglycan, or poly(I:C) significantly upregulated the expression of CfIKK1. Co-immunoprecipitation assays confirmed the interaction of CfIKK1 with scallop MyD88 (Myeloid differentiation actor 88, the key adaptor of the TLR signaling pathway) via its N-terminal kinase domain. Additionally, CfIKK1 protein could form homodimers and even oligomers, with N-terminal kinase domain and C-terminal scaffold dimerization domain playing key roles in this process. Finally, the results of RNAi experiments showed that when the scallop IKK1 gene was suppressed, the expression of IRF genes also decreased significantly. In conclusion, CfIKK1 could respond to PAMPs challenge and interact with MyD88 protein of scallop TLR signaling, with the formation of CfIKK1 dimers or oligomers. At the same time, the results of RNAi experiments revealed the close regulatory relationship between IKK1 and IRF genes of scallop. Therefore, as a key signal transduction molecule and immune activity regulator, CfIKK1 plays important roles in the innate immune system of scallops.


Subject(s)
I-kappa B Kinase , Pectinidae , Animals , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Pectinidae/genetics , Phylogeny , Signal Transduction/genetics , Toll-Like Receptors/metabolism
3.
Int J Biol Macromol ; 222(Pt A): 1250-1263, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36191792

ABSTRACT

The interferon regulatory factor (IRF) family comprises transcription factors that are crucial in immune defense, stress response, reproduction, and development. However, the function of IRFs in invertebrates is unclear. Here, the full-length cDNA of an IRF-encoding gene (CfIRF1) in the Zhikong scallop (Chlamys farreri) comprising 2007 bp with an open reading frame of 1053 bp that encoded 350 amino acids was characterized, and its immune function was studied. The CfIRF1 protein contained a typical IRF domain at its N-terminus. CfIRF1 was clustered with other proteins of the IRF1 subfamily, implying that they were closely related. CfIRF1 mRNA transcripts could be detected in all tested scallop tissues, with the highest expression observed in the gills and hepatopancreas. CfIRF1 expression was significantly induced by the polyinosinic-polycytidylic acid and acute viral necrosis virus challenge. CfIRF1 could directly interact with myeloid differentiation primary response protein 88 (MyD88), the key adaptor molecule of the toll-like receptor signaling pathway. CfIRF1 did not interact with scallop IKK1 (IKKα/ß family protein), IKK2, IKK3 (IKKε/TBK1 family protein), or with other IRF family proteins (IRF2 or IRF3). However, CfIRF1 interacted with itself to form a homodimer. CfIRF1 could specifically activate the interferon ß promoter of mammals and the promoter containing the interferon-stimulated response element (ISRE) in a dose-dependent manner. The truncated form of CfIRF1 had a significantly reduced ISRE activation ability, indicating that structural integrity was crucial for CfIRF1 to function as a transcription factor. Our findings provide insights into the functions of mollusk IRFs in innate immunity. The research results also provide valuable information that enriches the theory of comparative immunology and that can help prevent diseases in scallop farming.


Subject(s)
Antiviral Agents , Pectinidae , Animals , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Antiviral Agents/metabolism , Pectinidae/genetics , Immunity, Innate/genetics , Poly I-C/pharmacology , Mammals/metabolism
4.
Front Immunol ; 13: 1091419, 2022.
Article in English | MEDLINE | ID: mdl-36713402

ABSTRACT

Inhibitor of κB kinase (IKK) family proteins are key signaling molecules in the animal innate immune system and are considered master regulators of inflammation and innate immunity that act by controlling the activation of transcription factors such as NF-κB. However, few functional studies on IKK in invertebrates have been conducted, especially in marine mollusks. In this study, we cloned the IKK gene in the Zhikong scallop Chlamys farreri and named it CfIKK3. CfIKK3 encodes a 773-amino acid-long protein, and phylogenetic analysis showed that CfIKK3 belongs to the invertebrate TBK1/IKKϵ protein family. Quantitative real-time PCR analysis showed that CfIKK3 mRNA is ubiquitously expressed in all tested scallop tissues. The expression of CfIKK3 transcripts was significantly induced after challenge with lipopolysaccharide, peptidoglycan, or poly(I:C). Co-immunoprecipitation (co-IP) assays confirmed the direct interaction of CfIKK3 with MyD88 (the key adaptor in the TLR pathway) and MAVS (the key adaptor in the RLR pathway), suggesting that this IKK protein plays a crucial role in scallop innate immune signal transduction. In addition, the CfIKK3 protein formed homodimers and bound to CfIKK2, which may be a key step in the activation of its own and downstream transcription factors. Finally, in HEK293T cells, dual-luciferase reporter gene experiments showed that overexpression of CfIKK3 protein activated the NF-κB reporter gene in a dose-dependent manner. In conclusion, our experimental results confirmed that CfIKK3 could respond to PAMPs challenge and participate in scallop TLR and RLR pathway signaling, ultimately activating NF-κB. Therefore, as a key signaling molecule and modulator of immune activity, CfIKK3 plays an important role in the innate immune system of scallops.


Subject(s)
I-kappa B Kinase , Pectinidae , Humans , Animals , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Amino Acid Sequence , Phylogeny , HEK293 Cells , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Immunity, Innate/genetics , Pectinidae/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
5.
ACS Nano ; 6(5): 4072-82, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22506898

ABSTRACT

We present a strategy to achieve heterogeneous seeded growth on nanoparticle (NP) surfaces and construct various Pt nanostructures (cage- and ring-like) by using selective etching as surface-free-energy-distribution modifier. Preprepared Au polyhedron NPs (octahedron, decahedron, nanorod, and nanoplate) are mixed with KI, H(2)PtCl(6), and surfactant. Under heating, KI is first oxidized to I(2), which then selectively etches the edges of Au polyhedrons. Consequently, the partial removal of surface Au atoms creates highly active sites (exposed high-index facets, atom steps, and kinks) on the etched edges. Then the reduced Pt(0) atoms deposit on the etched edges preferentially and grow further, generating bimetallic nanostructures, Au octahedrons, or decahedrons with edges coated by Pt. The Pt layer protects the Au on the etched edges against further etching, changing the etching route and causing the Au on {111} facets without a Pt layer to be etched. After the Au is removed completely from the bimetallic nanostructures, ring-like, frame-like, and octahedral cage-like Pt nanostructures form. The evolution from Au polyhedrons to Pt ring or octahedron cage is investigated systematically by high-resolution transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, scanning transmission electron microscopy, and high-angle annular dark field.

SELECTION OF CITATIONS
SEARCH DETAIL