Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34051138

ABSTRACT

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Subject(s)
Ecotype , Genetic Variation , Genome, Plant , Oryza/genetics , Adaptation, Physiological/genetics , Agriculture , Domestication , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genomic Structural Variation , Molecular Sequence Annotation , Phenotype
2.
Hepatology ; 77(6): 1866-1881, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36647589

ABSTRACT

BACKGROUND AND AIMS: Bile acids trigger a hepatic inflammatory response, causing cholestatic liver injury. Runt-related transcription factor-1 (RUNX1), primarily known as a master modulator in hematopoiesis, plays a pivotal role in mediating inflammatory responses. However, RUNX1 in hepatocytes is poorly characterized, and its role in cholestasis is unclear. Herein, we aimed to investigate the role of hepatic RUNX1 and its underlying mechanisms in cholestasis. APPROACH AND RESULTS: Hepatic expression of RUNX1 was examined in cholestatic patients and mouse models. Mice with liver-specific ablation of Runx1 were generated. Bile duct ligation and 1% cholic acid diet were used to induce cholestasis in mice. Primary mouse hepatocytes and the human hepatoma PLC/RPF/5- ASBT cell line were used for mechanistic studies. Hepatic RUNX1 mRNA and protein levels were markedly increased in cholestatic patients and mice. Liver-specific deletion of Runx1 aggravated inflammation and liver injury in cholestatic mice induced by bile duct ligation or 1% cholic acid feeding. Mechanistic studies indicated that elevated bile acids stimulated RUNX1 expression by activating the RUNX1 -P2 promoter through JAK/STAT3 signaling. Increased RUNX1 is directly bound to the promotor region of inflammatory chemokines, including CCL2 and CXCL2 , and transcriptionally repressed their expression in hepatocytes, leading to attenuation of liver inflammatory response. Blocking the JAK signaling or STAT3 phosphorylation completely abolished RUNX1 repression of bile acid-induced CCL2 and CXCL2 in hepatocytes. CONCLUSIONS: This study has gained initial evidence establishing the functional role of hepatocyte RUNX1 in alleviating liver inflammation during cholestasis through JAK/STAT3 signaling. Modulating hepatic RUNX1 activity could be a new therapeutic target for cholestasis.


Subject(s)
Bile Acids and Salts , Cholestasis , Inflammation , Animals , Humans , Mice , Bile Acids and Salts/adverse effects , Bile Acids and Salts/metabolism , Cholestasis/etiology , Cholestasis/metabolism , Cholic Acids/adverse effects , Cholic Acids/pharmacology , Core Binding Factor Alpha 2 Subunit/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Inflammation/etiology , Inflammation/genetics , Inflammation/metabolism , Liver/metabolism , STAT3 Transcription Factor/metabolism
3.
Part Fibre Toxicol ; 21(1): 20, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610056

ABSTRACT

BACKGROUND: The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS: In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION: Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.


Subject(s)
Nanoparticles , Polystyrenes , Animals , Mice , Polystyrenes/toxicity , Reactive Oxygen Species , Necroptosis , Plastics , Hepatocytes , Macrophages , Mitochondria , Nanoparticles/toxicity , Liver
4.
J Nanobiotechnology ; 20(1): 37, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057820

ABSTRACT

BACKGROUND: Gold nanoparticles (AuNPs) are increasingly utilized in industrial and biomedical fields, thereby demanding a more comprehensive knowledge about their safety. Current toxicological studies mainly focus on the unfavorable biological impact governed by the physicochemical properties of AuNPs, yet the consequences of their interplay with other bioactive compounds in biological systems are poorly understood. RESULTS: In this study, AuNPs with a size of 10 nm, the most favorable size for interaction with host cells, were given alone or in combination with bacterial lipopolysaccharide (LPS) in mice or cultured hepatic cells. The results demonstrated that co exposure to AuNPs and LPS exacerbated fatal acute liver injury (ALI) in mice, although AuNPs are apparently non-toxic when administered alone. AuNPs do not enhance systemic or hepatic inflammation but synergize with LPS to upregulate hepatic apoptosis by augmenting macrophage-hepatocyte crosstalk. Mechanistically, AuNPs and LPS coordinate to upregulate NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation and activate the intrinsic apoptotic pathway in hepatic macrophages. Extracellular ROS generation from macrophages is then augmented, thereby inducing calcium-dependent ROS generation and promoting apoptosis in hepatocytes. Furthermore, AuNPs and LPS upregulate scavenger receptor A expression in macrophages and thus increase AuNP uptake to mediate further apoptosis induction. CONCLUSIONS: This study reveals a profound impact of AuNPs in aggravating the hepatotoxic effect of LPS by amplifying ROS-dependent crosstalk in hepatic macrophages and hepatocytes.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic/pathology , Gold/toxicity , Hepatocytes , Lipopolysaccharides/adverse effects , Metal Nanoparticles/toxicity , Animals , Apoptosis/drug effects , Cell Communication/drug effects , HEK293 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/drug effects , Liver/pathology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Toxicity Tests, Acute
5.
Pharmacol Res ; 166: 105470, 2021 04.
Article in English | MEDLINE | ID: mdl-33529751

ABSTRACT

The beneficial effects of antioxidants against oxidative stress have been well described. However, the pharmacological impacts of antioxidants other than inhibiting the production of reactive oxygen species (ROS) remain less understood. This study demonstrated that diphenyleneiodonium (DPI), a canonical NADPH oxidase 2 (NOX2) inhibitor, effectively promoted non-opsonized bacterial phagocytosis. Indeed, DPI abrogated the elevation in the extracellular ATP level of Escherichia coli (E. coli) -infected murine peritoneal macrophages, thereby restoring the association of the purinergic receptor P2X7 with non-muscle myosin heavy chain 9 (MYH9) to upregulate the P2X7 -dependent phagocytosis of E. coli. DPI also suppressed inflammasome activation and reduced necroptosis in E. coli-infected macrophages by decreasing extracellular ATP levels. Mechanistically, DPI upregulated p38 MAPK phosphorylation to suppress the expression and activity of the hemichannel protein connexin 43 (CX43), leading to the inhibition of CX43-mediated ATP efflux in E. coli-infected macrophages. In a murine E. coli infection model, DPI effectively reduced ATP release, decreased bacterial load and inhibited inflammasome activation, thereby improving survival and ameliorating organ injuries in model mice. In summary, our study demonstrates a previously unknown function of DPI in conferring protection against bacterial infection and suggests a putative antimicrobial strategy of modulating CX43 -dependent ATP leakage.


Subject(s)
Antioxidants/pharmacology , Connexin 43/immunology , Inflammasomes/antagonists & inhibitors , Onium Compounds/pharmacology , Phagocytosis/drug effects , Receptors, Purinergic P2X7/immunology , Adenosine Triphosphate/immunology , Animals , Escherichia coli/drug effects , Escherichia coli/immunology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/immunology , Inflammasomes/immunology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
6.
Ecotoxicol Environ Saf ; 211: 111900, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33440266

ABSTRACT

Gold nanoparticles (AuNPs) are extensively utilized in biomedical fields. However, their potential interaction with host cells has not been comprehensively elucidated. In this study, we demonstrated a size-dependent effect of AuNPs to synergize with bacterial lipopolysaccharide (LPS) in promoting neutrophil extracellular traps (NETs) release in human peripheral neutrophils. Mechanistically, LPS was more efficient to contact with 10 nm AuNPs and promote their uptake in neutrophils compared to 40 and 100 nm AuNPs, leading to a synergistic upregulation of class A scavenger receptor (SRA) which mediated AuNPs uptake and triggered activation of extracellular regulated protein kinase (ERK) and p38. Blocking SRA or inhibiting ERK and p38 activation remarkably abrogated the effect of AuNPs and LPS to induce NETs formation. Further experiments demonstrated that AuNPs and LPS augmented the production of cytosolic reactive oxygen species (ROS) in p38 and ERK dependent manner, through upregulating and activating NADPH oxidase 2 (NOX2). Accordingly, scavenging of ROS or inhibiting the NOX2 dampened NETs release induced by combined AuNPs and LPS treatment. AuNPs and LPS also synergized to upregulate reactive oxygen species modulator 1 (ROMO1) via activating ERK, thereby increasing mitochondrial ROS generation and promoting the release of NETs. In summary, we provide new evidences about the synergy of AuNPs and LPS to augment cellular responses in neutrophils, which implicates the need to consider the amplifying effect by pathogenic stimuli when utilizing nanomaterials in infectious or inflammatory conditions.


Subject(s)
Metal Nanoparticles/chemistry , Neutrophils/physiology , Extracellular Traps/drug effects , Gold/metabolism , Humans , Lipopolysaccharides , Membrane Proteins , Mitochondrial Proteins/metabolism , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Scavenger/metabolism
7.
Biochem Biophys Res Commun ; 511(4): 847-854, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30850160

ABSTRACT

Neutrophil extracellular traps (NETs) play a critical role in host antimicrobial response whereas they are also implicated in the pathogenesis of inflammatory and autoimmunediseases. Generation of reactiveoxygen species (ROS) is key to NETs formation. A variety of stimulatory ligands have been found to enhance ROS production and thus trigger NETs. However, the mechanisms that connect receptor stimuli with ROS production and NETs formation remain unclear. In this study, we described a new mechanism of NETs generation in neutrophils triggered by stimulation of the class A scavenger receptor (SRA), a major subtype of scavenger receptors in response to various stimuli during infection and inflammatory disorders. By using polyinosinic acid (Poly I), a ribonucleotide ligand of SRA, we demonstrated that SRA stimulation lead to selective ERK phosphorylation, which upregulated cytosol ROS levels and induced canonical NETs formation by activating NADPH oxidase 2 (NOX2). Interestingly, our results showed that mitochondrial ROS (mtROS) production was also enhanced by the SRA dependent ERK activation through upregulation and activation of reactive oxygen species modulator 1(ROMO1), a mitochondrial membrane protein and a key mediator of mtROS. Moreover, inhibition of the SRA elicited ROMO1 activation dampened NETs release upon SRA stimulation. Overall, our study describes a new insight into the NETs release triggered by membrane SRA stimulation and mediated by ERK dependent NOX2 and ROMO1 activation.


Subject(s)
Extracellular Traps/immunology , Membrane Proteins/immunology , Mitochondrial Proteins/immunology , NADPH Oxidase 2/immunology , Neutrophils/immunology , Scavenger Receptors, Class A/immunology , Cells, Cultured , Humans , MAP Kinase Signaling System , Membrane Potential, Mitochondrial , Reactive Oxygen Species/immunology
8.
Plant Cell Physiol ; 59(5): 887-902, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29566164

ABSTRACT

Lesion mimic mutants are powerful tools for unveiling the molecular connections between cell death and pathogen resistance. Various proteins responsible for lesion mimics have been identified; however, the mechanisms underlying lesion formation and pathogen resistance are still unknown. Here, we identify a lesion mimic mutant in rice, lesion mimic leaf 1 (lml1). The lml1 mutant exhibited abnormal cell death and resistance to both bacterial blight and rice blast. LML1 is expressed in all types of leaf cells, and encodes a novel eukaryotic release factor 1 (eRF1) protein located in the endoplasmic reticulum. Protein sequences of LML1 orthologs are conserved in yeast, animals and plants. LML1 can partially rescue the growth delay phenotype of the LML1 yeast ortholog mutant, dom34. Both lml1 and mutants of AtLML1 (the LML1 Arabidopsis ortholog) exhibited a growth delay phenotype like dom34. This indicates that LML1 and its orthologs are functionally conserved. LML1 forms a functional complex with a eukaryotic elongation factor 1A (eEF1A)-like protein, SPL33/LMM5.1, whose mutant phenotype was similar to the lml1 phenotype. This complex was conserved between rice and yeast. Our work provides new insight into understanding the mechanism of cell death and pathogen resistance, and also lays a good foundation for studying the fundamental molecular function of Pelota/DOM34 and its orthologs in plants.


Subject(s)
Conserved Sequence , Disease Resistance , Oryza/cytology , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Amino Acid Sequence , Cell Death , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Chromosome Mapping , Circadian Clocks/radiation effects , Cloning, Molecular , Gene Expression Regulation, Plant , Light , Magnaporthe/physiology , Oryza/genetics , Oryza/immunology , Phenotype , Photoperiod , Phylogeny , Plant Leaves/growth & development , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Binding , Temperature
10.
Mediators Inflamm ; 2017: 6541729, 2017.
Article in English | MEDLINE | ID: mdl-28539706

ABSTRACT

A growing body of literature suggests that most chronic autoimmune diseases are associated with inappropriate inflammation mediated by Toll-like receptor (TLR) 3, TLR7/8, or TLR9. Therefore, research into blocking TLR activation to treat these disorders has become a hot topic. Here, we report the immunomodulatory properties of a nonstimulatory CpG-containing oligodeoxynucleotide (CpG-ODN), CpG-c41, which had previously only been known as a TLR9 antagonist. In this study, we found that both in vitro and in vivo CpG-c41 decreased levels of various proinflammatory factors that were induced by single activation or coactivation of intracellular TLRs, but not membrane-bound TLRs, no matter what downstream signal pathways the TLRs depend on. Moreover, CpG-c41 attenuated excessive inflammation in the imiquimod-induced psoriasis-like mouse model of skin inflammation by suppressing immune cell infiltration and release of inflammatory factors. We also found evidence that the immunosuppressive effects of CpG-c41 on other intracellular TLRs are mediated by a TLR9-independent mechanism. These results suggest that CpG-c41 acts as an upstream of signaling cascades, perhaps on the processes of ligand internalization and transfer. Taken together, these results suggest that CpG-c41 disrupts various aspects of intracellular TLR activation and provides a deeper insight into the regulation of innate immunity.


Subject(s)
Immunosuppressive Agents/therapeutic use , Inflammation/metabolism , Oligodeoxyribonucleotides/therapeutic use , Aminoquinolines/pharmacology , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Imidazoles/pharmacology , Imiquimod , Immunity, Innate/physiology , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation/immunology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RAW 264.7 Cells , Signal Transduction/drug effects , Toll-Like Receptor 3/agonists , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/agonists , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/metabolism , Zymosan/pharmacology
11.
Mediators Inflamm ; 2016: 6152713, 2016.
Article in English | MEDLINE | ID: mdl-27313401

ABSTRACT

Activated macrophages are the primary sources of IL-12, a key cytokine bridging innate and adaptive immunity. However, macrophages produce low amounts of IL-12 upon stimulation and the underlying regulatory mechanism remains unclear. In this study, we found a new calcium-dependent mechanism that controlled IL-12 production in LPS-treated murine macrophages. First, LPS was demonstrated to induce extracellular calcium entry in murine peritoneal macrophages and inhibition of calcium influx resulted in marked enhancement in IL-12 production. Then, withdrawal of extracellular calcium was found to suppress CaMKKß and AMPK activation triggered by LPS while chemical inhibition or genetic knockdown of these two kinases augmented LPS induced IL-12 production. AMPK activation increased the NAD(+)/NADH ratio and activated Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylating enzyme and negative regulator of inflammation. Chemical inhibitor or siRNA of SIRT1 enhanced IL-12 release while its agonist suppressed IL-12 production. Finally, it was found that SIRT1 selectively affected the transcriptional activity of NF-κB which thereby inhibited IL-12 production. Overall, our study demonstrates a new role of transmembrane calcium mobilization in immunity modulation such that inhibition of calcium influx leads to impaired activation of CaMKKß-AMPK-SIRT1 signaling pathway which lifts restriction on NF-κB activation and results in enhanced IL-12 production.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Calcium/metabolism , Interleukin-12/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Methyltransferases/metabolism , Sirtuin 1/metabolism , Animals , Biological Transport/drug effects , Cells, Cultured , Interleukin-10/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
12.
Hippocampus ; 24(12): 1570-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25074486

ABSTRACT

Bisphenol A (BPA), one of the most common environmental endocrine disruptors, has been recognized to have wide adverse effects on the brain development and behavior. These adversities are related to its ability to bind estrogen receptor (ER) with subsequent alteration of its expression in the target areas. However, very little is known about whether BPA exposure also affects ER phosphorylation and its translocation to nucleus during postnatal development, two critical steps for its function. Here, we found that during development from postnatal day 7 (P7) to P21, the alpha subtype of ER (ERα) in the hippocampus of male rats experienced remarkable alterations in terms of its expression, phosphorylation and translocation to nucleus. Exposure to low level of BPA had bidirectional, development-dependent effects on the expression of ERα mRNA and protein, but decreased ERα phosphorylation and impaired its translocation to nucleus throughout the period investigated. Treatment with low dose of ICI 182,780 (ICI), an ER antagonist to block the binding of ER with BPA, reversed the altered ERα following BPA exposure, highlighting critical involvement of ER. Moreover, ICI treatment rescued the hippocampus-dependent behavioral deficits in the adult rats experiencing early-life BPA exposure. Overall, our results indicate that BPA interferes with the ERα signaling in the developing hippocampus in an ER-dependent manner, which may underlie its adverse behavioral and cognitive outcomes in adult animals.


Subject(s)
Benzhydryl Compounds/toxicity , Estrogen Receptor alpha/metabolism , Hippocampus/drug effects , Hippocampus/growth & development , Phenols/toxicity , Prenatal Exposure Delayed Effects , Active Transport, Cell Nucleus/drug effects , Animals , Estradiol/analogs & derivatives , Estradiol/pharmacology , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Female , Fulvestrant , Hippocampus/metabolism , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Phosphorylation , Pregnancy , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Spatial Memory/drug effects , Spatial Memory/physiology
13.
Redox Rep ; 29(1): 2312320, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38329114

ABSTRACT

Burns and burn sepsis, characterized by persistent and profound hypercatabolism, cause energy metabolism dysfunction that worsens organ injury and systemic disorders. Glutamine (Gln) is a key nutrient that remarkably replenishes energy metabolism in burn and sepsis patients, but its exact roles beyond substrate supply is unclear. In this study, we demonstrated that Gln alleviated liver injury by sustaining energy supply and restoring redox balance. Meanwhile, Gln also rescued the dysfunctional mitochondrial electron transport chain (ETC) complexes, improved ATP production, reduced oxidative stress, and protected hepatocytes from burn sepsis injury. Mechanistically, we revealed that Gln could activate SIRT4 by upregulating its protein synthesis and increasing the level of Nicotinamide adenine dinucleotide (NAD+), a co-enzyme that sustains the activity of SIRT4. This, in turn, reduced the acetylation of shock protein (HSP) 60 to facilitate the assembly of the HSP60-HSP10 complex, which maintains the activity of ETC complex II and III and thus sustain ATP generation and reduce reactive oxygen species release. Overall, our study uncovers a previously unknown pharmacological mechanism involving the regulation of HSP60-HSP10 assembly by which Gln recovers mitochondrial complex activity, sustains cellular energy metabolism and exerts a hepato-protective role in burn sepsis.


Subject(s)
Burns , Sepsis , Sirtuins , Humans , Glutamine/metabolism , Glutamine/pharmacology , Energy Metabolism , Adenosine Triphosphate/metabolism , Burns/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Liver/metabolism , Mitochondrial Proteins/metabolism , Sirtuins/metabolism
14.
Plant Commun ; : 100999, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853433

ABSTRACT

Grain weight, a key determinant of yield in rice (Oryza sativa L.), is governed primarily by genetic factors, whereas grain chalkiness, a detriment to grain quality, is intertwined with environmental factors such as mineral nutrients. Nitrogen (N) is recognized for its impact on grain chalkiness, yet the underlying molecular mechanisms remain elusive. This study revealed the pivotal role of rice NODULE INCEPTION-LIKE PROTEIN 3 (OsNLP3) in simultaneously regulating grain weight and grain chalkiness. Our investigation showed that the loss of OsNLP3 leads to a reduction in both grain weight and dimension, in contrast to the enhancement observed with OsNLP3 overexpression. OsNLP3 directly suppresses the expression of OsCEP6.1 and OsNF-YA8, which were identified as negative regulators associated with grain weight. Consequently, two novel regulatory modules, OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8, were identified as key players in grain weight regulation. Notably, the OsNLP3-OsNF-YA8 module not only augments grain weight but also mitigates grain chalkiness in response to N. This research clarifies the molecular mechanisms orchestrating grain weight through the OsNLP3-OsCEP6.1 and OsNLP3-OsNF-YA8 modules, underscoring the pivotal role of the OsNLP3-OsNF-YA8 module in alleviating grain chalkiness. These findings offer potential targets for concurrently enhancing rice yield and quality.

15.
Nutrients ; 15(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049605

ABSTRACT

Burn injury is a common form of traumatic injury that leads to high mortality worldwide. A severe burn injury usually induces gut barrier dysfunction, partially resulting from the impairment in the proliferation and self-renewal of intestinal stem cells (ISCs) post burns. As a main energy substance of small intestinal enterocytes, glutamine (Gln) is important for intestinal cell viability and growth, while its roles in ISCs-induced regeneration after burns are still unclear. To demonstrate the potential effects of Gln in improving ISCs proliferation and alleviating burn-induced intestinal injury, in this study, we verified that Gln significantly alleviated small intestine injury in burned mice model. It showed that Gln could significantly decrease the ferroptosis of crypt cells in the ileum, promote the proliferation of ISCs, and repair the crypt. These effects of Gln were also confirmed in the mouse small intestine organoids model. Further research found that Yes-associated protein (YAP) is suppressed after burn injury, and Gln could improve cell proliferation and accelerate the renewal of the damaged intestinal mucosal barrier after burns by activating YAP. YAP is closely associated with the changes in intestinal stem cell proliferation after burn injury and could be served as a potential target for severe burns.


Subject(s)
Glutamine , Intestinal Mucosa , Mice , Animals , Glutamine/pharmacology , Glutamine/metabolism , Intestinal Mucosa/metabolism , Enterocytes , Stem Cells , Cell Proliferation
16.
Burns Trauma ; 11: tkad056, 2023.
Article in English | MEDLINE | ID: mdl-38130728

ABSTRACT

Background: The gut microbiota is a complex ecosystem that plays a critical role in human health and disease. However, the relationship between gut microbiota and intestinal damage caused by burns is not well understood. The intestinal mucus layer is crucial for maintaining intestinal homeostasis and providing a physiological barrier against bacterial invasion. This study aims to investigate the impact of gut microbiota on the synthesis and degradation of intestinal mucus after burns and explore potential therapeutic targets for burn injury. Methods: A modified histopathological grading system was employed to investigate the effects of burn injury on colon tissue and the intestinal mucus barrier in mice. Subsequently, 16S ribosomal RNA sequencing was used to analyze alterations in the gut microbiota at days 1-10 post-burn. Based on this, metagenomic sequencing was conducted on samples collected at days 1, 5 and 10 to investigate changes in mucus-related microbiota and explore potential underlying mechanisms. Results: Our findings showed that the mucus barrier was disrupted and that bacterial translocation occurred on day 3 following burn injury in mice. Moreover, the gut microbiota in mice was significantly disrupted from days 1 to 3 following burn injury, but gradually recovered to normal as the disease progressed. Specifically, there was a marked increase in the abundance of symbiotic and pathogenic bacteria associated with mucin degradation on day 1 after burns, but the abundance returned to normal on day 5. Conversely, the abundance of probiotic bacteria associated with mucin synthesis changed in the opposite direction. Further analysis revealed that after a burn injury, bacteria capable of degrading mucus may utilize glycoside hydrolases, flagella and internalins to break down the mucus layer, while bacteria that synthesize mucus may help restore the mucus layer by promoting the production of short-chain fatty acids. Conclusions: Burn injury leads to disruption of colonic mucus barrier and dysbiosis of gut microbiota. Some commensal and pathogenic bacteria may participate in mucin degradation via glycoside hydrolases, flagella, internalins, etc. Probiotics may provide short-chain fatty acids (particularly butyrate) as an energy source for stressed intestinal epithelial cells, promote mucin synthesis and accelerate repair of mucus layer.

17.
Redox Biol ; 59: 102581, 2023 02.
Article in English | MEDLINE | ID: mdl-36565645

ABSTRACT

Mucus forms the first line of defence of the intestinal mucosa barrier, and mucin is its core component. Glutamine is a vital energy substance for goblet cells; it can promote mucus synthesis and alleviate damage to the intestinal mucus barrier after burn injury, but its mechanism is not fully understood. This study focused on the molecular mechanisms underlying the effects of glutamine on the synthesis and modification of mucin 2 (MUC2) by using animal and cellular models of burn sepsis. We found that anterior gradient-2 (AGR2) plays a key role in the posttranslational modification of MUC2. Oxidative stress induced by burn sepsis enhanced the S-glutathionylation of AGR2, interfered with the processing and modification of MUC2 precursors by AGR2 and blocked the synthesis of mature MUC2. Further studies revealed that NADPH, catalysed by glucose-6-phosphate dehydrogenase (G6PD), is a key molecule in inhibiting oxidative stress and regulating AGR2 activity. Glutamine promotes O-linked N-acetylglucosamine (O-GlcNAc) modification of G6PD via the hexosamine pathway, which facilitates G6PD homodimer formation and increases NADPH synthesis, thereby inhibiting AGR2 S-glutathionylation and promoting MUC2 maturation, ultimately reducing damage to the intestinal mucus barrier after burn sepsis. Overall, we have demonstrated that the central mechanisms of glutamine in promoting MUC2 maturation and maintaining the intestinal mucus barrier are the enhancement of G6PD glycosylation and inhibition of AGR2 S-glutathionylation.


Subject(s)
Glucosephosphate Dehydrogenase , Glutamine , Animals , Mice , Glucosephosphate Dehydrogenase/metabolism , Glutamine/metabolism , Goblet Cells/metabolism , Mucus/metabolism , NADP/metabolism
18.
Eur J Pharmacol ; 940: 175480, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36566008

ABSTRACT

Intestinal intraepithelial lymphocytes (IELs) play a sentinel role in the mucosal immune system because of their unique anatomical location in the epithelial layer. The disruption of IEL homeostasis is implicated in driving the intestinal injury of many typical inflammatory disorders, such as inflammatory bowel disease (IBD) and sepsis. Therefore, it is meaningful to alleviate intestinal injury by restoring IEL homeostasis in disease conditions. This study explores the effects of glutamine on intestinal IEL homeostasis in a murine model of burn sepsis. We report that glutamine inhibits inflammatory response and reduces injury in the small intestine of burn septic mice. This effect is attributed to the maintaining of IEL homeostasis by suppressing apoptosis and restoring the disrupted subpopulation balance induced by burn sepsis. Mechanistically, we show that glutamine does not affect the IL-15 dependent mechanisms that drive the maintenance and differentiation of IELs. Instead, glutamine sustains IEL homeostasis by upregulate aryl hydrocarbon receptor (AHR) and interleukin (IL)-22 transcription and expression. Consistently, the protective roles of glutamine in burn septic mice were repressed by further supplement with an AHR antagonist CH-223191. Collectively, our study reveals a new role of glutamine to maintain IEL homeostasis by activating the AHR signaling pathway, which in turn ameliorates intestinal injury in burn sepsis.


Subject(s)
Burns , Intraepithelial Lymphocytes , Sepsis , Mice , Animals , Glutamine/pharmacology , Glutamine/metabolism , Intestinal Mucosa , Homeostasis , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Burns/complications , Burns/drug therapy , Burns/metabolism , Mice, Inbred C57BL
19.
Burns Trauma ; 10: tkac041, 2022.
Article in English | MEDLINE | ID: mdl-36601059

ABSTRACT

Background: Alternative (M2)-activated macrophages drive the anti-inflammatory response against sepsis, a leading cause of death in patients suffering from burn injury. Macrophage M2 polarization is intrinsically linked with dominant oxidative phosphorylation (OXPHOS). Glutamine serves as a major anaplerotic source to fuel OXPHOS, but it remains unknown whether glutamine can modulate metabolic checkpoints in OXPHOS that favour M2 polarization. The study aims to explore whether glutamine essentially supports M2 polarization in IL-4-stimulated murine macrophages by sustaining the activity of PDH and whether glutamine augments macrophage M2 polarization and thus alleviates inflammation and organ injury in a murine burn sepsis model. Methods: To understand how glutamine promotes M2 activation in interleukin (IL-4)-treated murine macrophages, we detected glutamine-dependent M2 polarization and its relationship with the pyruvate dehydrogenase (PDH) complex by RT-PCR, flow cytometry and western blot. To explore how glutamine modulates PDH activity and thus supports M2 polarization, we compared the expression, phosphorylation and succinylation status of PDHA1 and then examined sirtuin SIRT5-dependent desuccinylation of PDHA1 and the effects of SIRT5 overexpression on M2 polarization by RT-PCR, flow cytometry and western blot. To determine whether glutamine or its metabolites affect M2 polarization, macrophages were cocultured with metabolic inhibitors, and then SIRT5 expression and M2 phenotype markers were examined by RT-PCR, flow cytometry and western blot. Finally, to confirm the in vivo effect of glutamine, we established a burn sepsis model by injecting Pseudomonas aeruginosa into burn wounds and observing whether glutamine alleviated proinflammatory injuries by RT-PCR, flow cytometry, western blot, immunofluorescent staining, hematoxylin-eosin staining and enzyme-linked immuno sorbent assay. Results: We showed that consumption of glutamine supported M2 activation in IL-4-treated murine macrophages by upregulating the activity of PDH. Mechanistically, glutamine did not affect the expression or alter the phosphorylation status of PDHA1 but instead downregulated the expression of SIRT5 and repressed SIRT5-dependent desuccinylation on PDHA1, which in turn recovered PDH activity and supported M2 polarization. This effect was implemented by its secondary metabolite α-ketoglutarate (αKG) rather than glutamine itself. Finally, we demonstrated that glutamine promoted macrophage M2 polarization in a murine burn sepsis model, thereby repressing excessive inflammation and alleviating organ injury in model mice. Conclusions: Glutamine mitigates murine burn sepsis by essentially supporting macrophage M2 polarization, with a mechanism involving the repression of the SIRT5-mediated desuccinylation of pyruvate dehydrogenase that replenishes OXPHOS and sustains M2 macrophages.

20.
Clin Transl Immunology ; 11(8): e1407, 2022.
Article in English | MEDLINE | ID: mdl-35924188

ABSTRACT

Objectives: Crohn's disease (CD) initiation and pathogenesis are believed to involve an environmental trigger in a genetically susceptible person that results in an immune response against commensal gut bacteria, leading to a compromised intestinal epithelial barrier and a cycle of inflammation. However, it has been difficult to study the contribution of all factors together in a physiologically relevant model and in a heterogenous patient population. Methods: We developed an autologous colonic monolayer model that incorporated the immune response from the same donor and a commensal bacteria, Faecalibacterium prausnitzii. Two-dimensional monolayers were grown from three-dimensional organoids generated from intestinal biopsies, and the epithelial integrity of the epithelium was measured using transepithelial electrical resistance. We determined the effect of immune cells alone, bacteria alone and the co-culture of immune cells and bacteria on integrity. Results: Monolayers derived from CD donors had impaired epithelial integrity compared to those from non-inflammatory bowel disease (IBD) donors. This integrity was further impaired by culture with bacteria, but not immune cells, despite a higher frequency of inflammatory phenotype peripheral T cells in CD donors. Variability in epithelial integrity was higher in CD donors than in non-IBD donors. Conclusion: We have developed a new autologous model to study the complexity of CD, which allows for the comparison of the barrier properties of the colonic epithelium and the ability to study how autologous immune cells directly affect the colonic barrier and whether this is modified by luminal bacteria. This new model allows for the study of individual patients and could inform treatment decisions.

SELECTION OF CITATIONS
SEARCH DETAIL