Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Theor Popul Biol ; 158: 1-20, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38697365

ABSTRACT

We consider a single genetic locus with two alleles A1 and A2 in a large haploid population. The locus is subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies follow a Wright-Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors of the conditional gene genealogy and the latent mutations of a sample with known allele counts, when the count n1 of allele A1 is fixed, and when either or both the sample size n and the selection strength |α| tend to infinity. Our study extends previous work under neutrality to the case of non-neutral rare alleles, asserting that when selection is not too strong relative to the sample size, even if it is strongly positive or strongly negative in the usual sense (α→-∞ or α→+∞), the number of latent mutations of the n1 copies of allele A1 follows the same distribution as the number of alleles in the Ewens sampling formula. On the other hand, very strong positive selection relative to the sample size leads to neutral gene genealogies with a single ancient latent mutation. We also demonstrate robustness of our asymptotic results against changing population sizes, when one of |α| or n is large.

2.
PLoS Comput Biol ; 19(10): e1011513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37782667

ABSTRACT

Defective interfering particles (DIPs) are virus-like particles that occur naturally during virus infections. These particles are defective, lacking essential genetic materials for replication, but they can interact with the wild-type virus and potentially be used as therapeutic agents. However, the effect of DIPs on infection spread is still unclear due to complicated stochastic effects and nonlinear spatial dynamics. In this work, we develop a model with a new hybrid method to study the spatial-temporal dynamics of viruses and DIPs co-infections within hosts. We present two different scenarios of virus production and compare the results from deterministic and stochastic models to demonstrate how the stochastic effect is involved in the spatial dynamics of virus transmission. We compare the spread features of the virus in simulations and experiments, including the formation and the speed of virus spread and the emergence of stochastic patchy patterns of virus distribution. Our simulations simultaneously capture observed spatial spread features in the experimental data, including the spread rate of the virus and its patchiness. The results demonstrate that DIPs can slow down the growth of virus particles and make the spread of the virus more patchy.


Subject(s)
Defective Interfering Viruses , Defective Viruses , Defective Viruses/genetics , Virus Replication , Virion
3.
Bull Math Biol ; 82(9): 123, 2020 09 13.
Article in English | MEDLINE | ID: mdl-32920679

ABSTRACT

We consider the problem of distance estimation under the TKF91 model of sequence evolution by insertions, deletions and substitutions on a phylogeny. In an asymptotic regime where the expected sequence lengths tend to infinity, we show that no consistent distance estimation is possible from sequence lengths alone. More formally, we establish that the distributions of pairs of sequence lengths at different distances cannot be distinguished with probability going to one.


Subject(s)
Evolution, Molecular , Models, Genetic , Base Sequence , Mathematical Concepts , Phylogeny , Probability
4.
Genetics ; 227(1)2024 05 07.
Article in English | MEDLINE | ID: mdl-38408329

ABSTRACT

We consider a simple diploid population-genetic model with potentially high variability of offspring numbers among individuals. Specifically, against a backdrop of Wright-Fisher reproduction and no selection, there is an additional probability that a big family occurs, meaning that a pair of individuals has a number of offspring on the order of the population size. We study how the pedigree of the population generated under this model affects the ancestral genetic process of a sample of size two at a single autosomal locus without recombination. Our population model is of the type for which multiple-merger coalescent processes have been described. We prove that the conditional distribution of the pairwise coalescence time given the random pedigree converges to a limit law as the population size tends to infinity. This limit law may or may not be the usual exponential distribution of the Kingman coalescent, depending on the frequency of big families. But because it includes the number and times of big families, it differs from the usual multiple-merger coalescent models. The usual multiple-merger coalescent models are seen as describing the ancestral process marginal to, or averaging over, the pedigree. In the limiting ancestral process conditional on the pedigree, the intervals between big families can be modeled using the Kingman coalescent but each big family causes a discrete jump in the probability of coalescence. Analogous results should hold for larger samples and other population models. We illustrate these results with simulations and additional analysis, highlighting their implications for inference and understanding of multilocus data.


Subject(s)
Genetics, Population , Models, Genetic , Pedigree , Humans , Population Density
5.
Math Biosci Eng ; 20(3): 4322-4352, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36896502

ABSTRACT

The Togashi Kaneko model (TK model) is a simple stochastic reaction network that displays discreteness-induced transitions between meta-stable patterns. Here we study a constrained Langevin approximation (CLA) of this model. This CLA, derived under the classical scaling, is an obliquely reflected diffusion process on the positive orthant and hence respects the constraint that chemical concentrations are never negative. We show that the CLA is a Feller process, is positive Harris recurrent and converges exponentially fast to the unique stationary distribution. We also characterize the stationary distribution and show that it has finite moments. In addition, we simulate both the TK model and its CLA in various dimensions. For example, we describe how the TK model switches between meta-stable patterns in dimension six. Our simulations suggest that, when the volume of the vessel in which all of the reactions that take place is large, the CLA is a good approximation of the TK model in terms of both the stationary distribution and the transition times between patterns.

6.
Genetics ; 224(3)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-36967220

ABSTRACT

Recurrent mutation produces multiple copies of the same allele which may be co-segregating in a population. Yet, most analyses of allele-frequency or site-frequency spectra assume that all observed copies of an allele trace back to a single mutation. We develop a sampling theory for the number of latent mutations in the ancestry of a rare variant, specifically a variant observed in relatively small count in a large sample. Our results follow from the statistical independence of low-count mutations, which we show to hold for the standard neutral coalescent or diffusion model of population genetics as well as for more general coalescent trees. For populations of constant size, these counts are distributed like the number of alleles in the Ewens sampling formula. We develop a Poisson sampling model for populations of varying size and illustrate it using new results for site-frequency spectra in an exponentially growing population. We apply our model to a large data set of human SNPs and use it to explain dramatic differences in site-frequency spectra across the range of mutation rates in the human genome.


Subject(s)
Genetics, Population , Models, Genetic , Humans , Mutation , Gene Frequency , Mutation Rate , Alleles
7.
Phys Rev E ; 95(3-1): 032605, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415285

ABSTRACT

We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at a low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement, showing the effect of a particles's shape, activity, and magnetic field on the microswimmer's diffusion, is analytically obtained. Comparison between analytical and computational results shows good agreement. In addition, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is investigated.

8.
Cancer Lett ; 374(2): 304-14, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26898938

ABSTRACT

Development of biomarkers that detect early stage resectable premalignant lesions of colon can provide critical aid in the prevention of colorectal cancer. Recent lines of evidence suggest the utility of mucin expression to predict malignant transformation of colon pre-neoplastic lesions. In this study, we investigated the combined expression of multiple mucins and mucin-associated glycans during the adenoma-carcinoma sequence of colon cancer progression. Further, we evaluated their applicability as markers for differentiating adenomas/adenocarcinomas from hyperplastic polyps. Immunohistochemical analyses performed on colon disease tissue microarrays revealed downregulation of MUC2 and MUC4 expression (p < 0.0001) while MUC1 and MUC5AC expressions were upregulated (p = 0.01) during adenoma-adenocarcinoma progression. Expression of MUC17 was downregulated in inflamed tissues compared to normal tissues, but its increased expression differentiated adenomas (p = 0.0028) and adenocarcinomas (p = 0.025) from inflammation. Glycan epitope-Tn/STn on MUC1 showed higher expression in hyperplastic polyps (p = 0.023), adenomas (p = 0.042) and adenocarcinomas (p = 0.0096) compared to normal tissues. Multivariate regression analyses indicated that a combination of MUC2, MUC5AC, and MUC17 could effectively discriminate adenoma-adenocarcinoma from hyperplastic polyps. Altogether, a combined analysis of altered mucins and mucin-associated glycans is a useful approach to distinguish premalignant/malignant lesions of colon from benign polyps.


Subject(s)
Adenoma/metabolism , Adenoma/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Mucins/metabolism , Polysaccharides/metabolism , Biomarkers, Tumor/metabolism , Early Detection of Cancer , Humans , Immunohistochemistry , Immunophenotyping , Multivariate Analysis , Precancerous Conditions/metabolism , Precancerous Conditions/pathology
SELECTION OF CITATIONS
SEARCH DETAIL