Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
2.
Sci Rep ; 14(1): 7652, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561456

ABSTRACT

Considering the effect of SIRT1 on improving myocardial fibrosis and GAS5 inhibiting occurrence and development of myocardial fibrosis at the cellular level, the aim of the present study was to investigate whether LncRNA GAS5 could attenuate cardiac fibrosis through regulating mir-217/SIRT1, and whether the NLRP3 inflammasome activation was involved in this process. Isoprenaline (ISO) was given subcutaneously to the male C57BL/6 mice to induce myocardial fibrosis and the AAV9 vectors were randomly injected into the left ventricle of each mouse to overexpress GAS5. Primary myocardial fibroblasts (MCFs) derived from neonatal C57BL/6 mice and TGF-ß1 were used to induce fibrosis. And the GAS5 overexpressed MCFs were treated with mir-217 mimics and mir-217 inhibitor respectively. Then the assays of expression levels of NLRP3, Caspase-1, IL-1ß and SIRT1 were conducted. The findings indicated that the overexpression of GAS5 reduced the expression levels of collagen, NLRP3, Capase-1, IL-1ß and SIRT1 in ISO treated mice and TGF-ß1 treated MCFs. However, this effect was significantly weakened after mir-217 overexpression, but was further enhanced after knockdown of mir-217. mir-217 down-regulates the expression of SIRT1, leading to increased activation of the NLRP3 inflammasome and subsequent pyroptosis. LncRNA GAS5 alleviates cardiac fibrosis induced via regulating mir-217/SIRT1 pathway.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Mice , Male , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Isoproterenol/toxicity , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammasomes , Sirtuin 1/genetics , Mice, Inbred C57BL , Fibrosis
3.
Talanta ; 278: 126497, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38955104

ABSTRACT

Unveiling the intricate relationship between cancer and Golgi viscosity remains an arduous endeavor, primarily due to the lack of Golgi-specific fluorescent probes tailored for viscosity measurement. Considering this formidable obstacle, we have triumphed over the challenge by devising a bespoke Golgi-specific viscosity probe, aptly named GOL-V. This ingenious innovation comprises the viscosity rotor BODIPY intricately tethered to the Golgi-targeting moiety benzsulfamide. GOL-V exhibits remarkable sensitivity to fluctuations in viscosity, the fluorescence intensity of GOL-V increased 114-fold when the viscosity value was increased from 2.63 to 937.28 cP. Owing to its remarkable capacity to suppress the TICT state under conditions of heightened viscosity. Moreover, its efficacy in sensitively monitoring Golgi viscosity alterations within living cells is also very significant. Astonishingly, our endeavors have culminated in not only the visualization of Golgi viscosity at the cellular and tissue levels but also in the clinical tissue samples procured from cancer patients. Harnessing the prowess of GOL-V, we have successfully demonstrated that Golgi viscosity could serve as a discerning marker for detecting the presence of cancer. The convergence of these exceptional attributes firmly establishes GOL-V as an immensely potent instrument, holding immense potential in the realm of cancer diagnosis.


Subject(s)
Fluorescent Dyes , Golgi Apparatus , Neoplasms , Humans , Golgi Apparatus/metabolism , Golgi Apparatus/chemistry , Viscosity , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Neoplasms/diagnosis , Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Optical Imaging
4.
Exp Neurol ; 371: 114586, 2024 01.
Article in English | MEDLINE | ID: mdl-37898396

ABSTRACT

Hydrogen sulfide (H2S), an endogenous gasotransmitter, exhibits the anxiolytic roles through its anti-inflammatory effects, although its underlying mechanisms remain largely elusive. Emerging evidence has documented that cell cycle checkpoint kinase 1 (Chk1)-regulated DNA damage plays an important role in the neurodegenerative diseases; however, there are few relevant reports on the research of Chk1 in neuropsychiatric diseases. Here, we aimed to investigate the regulatory role of H2S on Chk1 in lipopolysaccharide (LPS)-induced anxiety-like behavior focusing on inflammasome activation in the hippocampus. Cystathionine γ-lyase (CSE, a H2S-producing enzyme) knockout (CSE-/-) mice displayed anxiety-like behavior and activation of inflammasome-mediated inflammatory responses, manifesting by the increase levels of interleukin-1ß (IL-1ß), IL-6, and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) expression in the hippocampus. Importantly, expression of p-Chk1 and γ-H2AX (DNA damage marker) levels were also increased in the hippocampus of CSE-/- mice. LPS treatment decreased the expression of CSE and CBS while increased p-Chk1 and γ-H2AX levels and inflammasome-activated neuroinflammation in the hippocampus of mice. Moreover, p-Chk1 and γ-H2AX protein levels and cellular immunoactivity were significantly increased while CSE and CBS were markedly decreased in cultured BV2 cells followed by LPS treatment. Treatment of mice with GYY4137, a donor of H2S, inhibited LPS-induced increased in p-Chk1 and γ-H2AX levels, mitigated inflammasome activation and inflammatory responses as well as amelioration of anxiety-like behavior. Notably, SB-218078, a selective Chk1 inhibitor treatment attenuated the effect of LPS on inflammasome activation and inflammatory responses and the induction of anxiety-like behavior. Finally, STAT3 knockdown with AAV-STAT3 shRNA alleviated LPS-induced anxiety-like behavior and inhibited inflammasome activation in the hippocampus, and blockade of NLRP3 with MCC950 attenuated neuroinflammation induction and ameliorated LPS-induced anxiety-like behavior. Overall, this study indicates that downregulation of Chk1 activity by H2S activation may be considered as a valid strategy for preventing the progression of LPS-induced anxiety-like behavior.


Subject(s)
Hydrogen Sulfide , Mice , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/metabolism , Lipopolysaccharides/toxicity , Inflammasomes/metabolism , Neuroinflammatory Diseases , Checkpoint Kinase 1/metabolism , Anxiety/chemically induced , Anxiety/drug therapy , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL