Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L287-L297, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29074491

ABSTRACT

Statins, which are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase competitive inhibitors, not only lower blood cholesterol but also exert pleiotropic and beneficial effects in various diseases. However, the effects of statins on acute lung injury (ALI) induced by hyperbaric oxygen (HBO) have not been investigated. The present study is the first to investigate the effects of simvastatin in ALI induced by HBO in 8- to 9-wk-old C57BL/6 mice exposed to 0.23 MPa [=2.3 atmosphere absolute (ATA)] hyperoxia (≥95% O2) for 6 h. Mice were either given simvastatin (20 mg·kg·-1·day-1) in saline or a saline vehicle for 3 days before oxygen exposure. Lung tissue, serum, and bronchoalveolar lavage fluid (BALF) were collected for analysis of proapoptotic proteins, low-density lipoprotein cholesterol (LDL-C) levels, and lung inflammation. Simvastatin treatment significantly reduced lung permeability, serum LDL-C levels, tissue apoptosis, and inflammation. However, simvastatin treatment had no effect on antioxidant enzyme activity, nicotinamide adenine dinucleotide phosphate oxidase 4 (NADPH4) expression, and Akt phosphorylation levels. Furthermore, we investigated the role of endothelial nitric oxide synthase (eNOS) in simvastatin protection through inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME; 20 mg/kg). Results showed that the beneficial effects of simvastatin on ALI induced by HBO (antiinflammatory, antiapoptotic, lipid lowering, and reduction in lung permeability) were reversed. These results showed that simvastatin curbs HBO-induced lung edema, permeability, inflammation, and apoptosis via upregulating eNOS expression and that simvastatin could be an effective therapy to treat prolonged HBO exposure.


Subject(s)
Acute Lung Injury/prevention & control , Anticholesteremic Agents/pharmacology , Gene Expression Regulation/drug effects , Hyperbaric Oxygenation/adverse effects , Nitric Oxide Synthase Type III/metabolism , Simvastatin/pharmacology , Acute Lung Injury/enzymology , Acute Lung Injury/etiology , Animals , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Transcriptional Activation
2.
Life Sci ; 322: 121669, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37023950

ABSTRACT

Pain and obesity, as well as their associated impairments, are major health concerns. Understanding the relationship between the two is the focus of a growing body of research. However, early researches attribute increased mechanical stress from excessive weight as the main factor of obesity-related pain, which not only over-simplify the association, but also fail to explain some controversial outcomes arising from clinical investigations. This review focuses on neuroendocrine and neuroimmune modulators importantly involved in both pain and obesity, analyzing nociceptive and anti-nociceptive mechanisms based on neuroendocrine pathways including galanin, ghrelin, leptin and their interactions with other neuropeptides and hormone systems which have been reported to play roles in pain and obesity. Mechanisms of immune activities and metabolic alterations are also discussed, due to their intense interactions with neuroendocrine system and crucial roles in the development and maintenance of inflammatory and neuropathic pain. These findings have implications for health given rising rates of obesity and pain-related diagnoses, by providing novel weight-control and analgesic therapies targeted on specific pathways.


Subject(s)
Neuralgia , Neuroimmunomodulation , Humans , Obesity/complications , Obesity/epidemiology , Neurosecretory Systems , Comorbidity
3.
Int J Oncol ; 59(6)2021 Dec.
Article in English | MEDLINE | ID: mdl-34751413

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, on p. 1969, two pairs of panels shown for the DU145 data appeared to contain overlaps, such that they may have been derived from the same original source (specifically, relating to the shCon and the shSMC1A experiments). The authors have referred back to their original data, and realize that inadvertent errors were made during the assembly of these figures. The corrected version of Fig. 5, showing discrete representative images for the shCon and the shSMC1A experiments with the DU145 cell line, is shown on the next page. All the authors agree to this corrigendum. Note that the revisions made to this figure do not adversely affect the results reported in the paper, or the conclusions stated therein. The authors regret that Fig. 5 was not presented in its correct form in their paper, thank the Editor of International Journal of Oncology for granting them the opportunity to publish this corrigendum, and offer their apologies to the Editor and to the readers of the Journal. [the original article was published in International Journal of Oncology 49: 1963-1972, 2016; DOI: 10.3892/ijo.2016.3697].

4.
Int J Biol Sci ; 16(16): 3149-3162, 2020.
Article in English | MEDLINE | ID: mdl-33162821

ABSTRACT

Background: Cancer stem cells (CSCs) are biologically characterized by self-renewal, multi-directional differentiation and infinite proliferation, inducing anti-tumor drug resistance and metastasis. In the present study, we attempted to depict the baseline landscape of CSC-mediated biological properties, knowing that it is vital for tumor evolution, anti-tumor drug selection and drug resistance against fatal malignancy. Methods: We performed single-cell RNA sequencing (scRNA-seq) analysis in 15208 cells from a pair of primary and metastatic sites of collecting duct renal cell carcinoma (CDRCC). Cell subpopulations were identified and characterized by t-SNE, RNA velocity, monocle and other computational methods. Statistical analysis of all single-cell sequencing data was performed in R and Python. Results: A CSC population of 1068 cells was identified and characterized, showing excellent differentiation and self-renewal properties. These CSCs positioned as a center of the differentiation process and transformed into CDRCC primary and metastatic cells in spatial and temporal order, and played a pivotal role in promoting the bone destruction process with a positive feedback loop in the bone metastasis microenvironment. In addition, CSC-specific marker genes BIRC5, PTTG1, CENPF and CDKN3 were observed to be correlated with poor prognosis of CDRCC. Finally, we pinpointed that PARP, PIGF, HDAC2, and FGFR inhibitors for effectively targeting CSCs may be the potential therapeutic strategies for CDRCC. Conclusion: The results of the present study may shed new light on the identification of CSCs, and help further understand the mechanism underlying drug resistance, differentiation and metastasis in human CDRCC.


Subject(s)
Carcinoma, Renal Cell/pathology , Neoplastic Stem Cells/cytology , RNA-Seq , Carcinoma, Renal Cell/genetics , Cell Differentiation , Drug Resistance, Neoplasm , Female , Humans , Neoplasm Metastasis , Single-Cell Analysis
5.
Int J Oncol ; 49(5): 1963-1972, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27667360

ABSTRACT

Structural maintenance of chromosome 1 alpha (SMC1A) gene has been reported to be related to tumor development in some types of human cancers. However, the misregulation of SMC1A and its functions in castration-resistant prostate cancer (CRPC) have not been well understood. In the present study, we found that SMC1A was elevated in androgen-independent PCa cell lines PC-3 and DU-145 compared to androgen sensitive LNCap and 22RV1 cells by qPCR and western blot assay. Knockdown of SMC1A inhibited cell growth, colony formation and cell migration abilities of PC-3 and DU145 cells by MTT, colony formation and transwell assays, and affected cell cycle progression in PC-3 and DU145 cells by flow cytometry. Moreover, SMC1A knockdown significantly reduced tumor growth in vivo in a nude mouse model. Additionally, we also found that the expression of SMC1A gene was higher in prostate cancer tissues than in the adjacent normal tissues by immunohistochemical staining, and was positively correlated to tumor metastasis and recurrence by Oncomine database mining. Taken together, the present study indicates that SMC1A may play an important role in malignant transformation of PCa under conditions of androgen deprivation and act as a new target for PCa diagnosis and treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Cycle Proteins/metabolism , Cell Movement , Cell Proliferation , Chromosomal Proteins, Non-Histone/metabolism , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Blotting, Western , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Flow Cytometry , Humans , Immunoenzyme Techniques , In Vitro Techniques , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Staging , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL