Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Article in English | MEDLINE | ID: mdl-36002648

ABSTRACT

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Histone Demethylases , Interferon Type I , Anthracyclines/metabolism , Anthracyclines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Histone Demethylases/metabolism , Humans , Interferon Type I/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
2.
Mol Cell ; 82(1): 75-89.e9, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34942120

ABSTRACT

Circular RNAs (circRNAs) are widely expressed in eukaryotes and are regulated in many biological processes. Although several studies indicate their activity as microRNA (miRNA) and protein sponges, little is known about their ability to directly control mRNA homeostasis. We show that the widely expressed circZNF609 directly interacts with several mRNAs and increases their stability and/or translation by favoring the recruitment of the RNA-binding protein ELAVL1. Particularly, the interaction with CKAP5 mRNA, which interestingly overlaps the back-splicing junction, enhances CKAP5 translation, regulating microtubule function in cancer cells and sustaining cell-cycle progression. Finally, we show that circZNF609 downregulation increases the sensitivity of several cancer cell lines to different microtubule-targeting chemotherapeutic drugs and that locked nucleic acid (LNA) protectors against the pairing region on circZNF609 phenocopy such effects. These data set an example of how the small effects tuned by circZNF609/CKAP5 mRNA interaction might have a potent output in tumor growth and drug response.


Subject(s)
Carcinogenesis , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neoplasms/metabolism , RNA, Circular/metabolism , RNA, Messenger/metabolism , Animals , Antineoplastic Agents/pharmacology , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , K562 Cells , Male , Mice, Nude , Microtubule-Associated Proteins/genetics , Microtubules/drug effects , Microtubules/genetics , Microtubules/pathology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , RNA, Circular/genetics , RNA, Messenger/genetics , Signal Transduction , Tumor Burden , Xenograft Model Antitumor Assays
3.
EMBO J ; 41(22): e109711, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35929179

ABSTRACT

Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.


Subject(s)
Multiple Myeloma , RNA, Long Noncoding , Humans , R-Loop Structures , Multiple Myeloma/genetics , Paraspeckles , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Interferons/genetics , Repressor Proteins/metabolism , Apoptosis Regulatory Proteins/genetics
4.
Cell ; 146(1): 67-79, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21722948

ABSTRACT

DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA repair enzyme thymine DNA glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific developmentally and hormonally regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair.


Subject(s)
DNA Methylation , Embryonic Development , Gene Expression Regulation, Developmental , Thymine DNA Glycosylase/metabolism , 5-Methylcytosine/metabolism , Animals , Cell Cycle Proteins/metabolism , Cytidine Deaminase/metabolism , Cytosine/analogs & derivatives , Cytosine/metabolism , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Thymine DNA Glycosylase/genetics , Transcription, Genetic
5.
Cell Mol Life Sci ; 81(1): 276, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909325

ABSTRACT

N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.


Subject(s)
Adenosine , Leukemia, Myeloid, Acute , Oxidative Stress , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Oxidative Stress/drug effects , Bortezomib/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
6.
J Transl Med ; 21(1): 215, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959606

ABSTRACT

BACKGROUND: This study aimed to characterize the genetic profile of patients with glioma and discuss the impact of next-generation sequencing in glioma diagnosis and treatment. METHODS: Between 2019 and 2022, we analyzed the genetic profile of 99 patients with glioma through the Oncomine Focus Assay. The assay enables the detection of mutations in 52 driver genes, including single nucleotide variants (SNVs), copy number variants (CNVs), and gene fusions. We also collected and analyzed patients' clinic characteristics and treatment outcomes. RESULTS: Over a period of 35 months, 700 patients with glioma followed by our neuro-oncology unit were screened, and 99 were enrolled in the study; most of the patients were excluded for inadequate non-morphological MRI or lack/inadequacy of the tissue samples. Based on our findings, most patients with glioma present mutations, such as SNVs, CNVs or gene fusions. Our data were similar to those reported by The Cancer Genome Atlas Program in terms of frequency of SNVs and CNVs, while we observed more cases of gene fusions. Median overall survival, progression-free survival, and time to progression were significantly lower for patients with grade VI glioblastoma than those with other gliomas. Only four patients were offered a targeted treatment based on the mutation detected; however, only one received treatment, the others could not receive the selected treatment because of worsening clinical status. CONCLUSION: Routine timely molecular profiling in patients with glioma should be implemented to offer patients an individualized diagnostic approach and provide them with advanced targeted therapy options if available.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Mutation/genetics , High-Throughput Nucleotide Sequencing , DNA Copy Number Variations/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy
7.
J Transl Med ; 21(1): 725, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845764

ABSTRACT

BACKGROUND: Molecular Tumor Boards (MTB) operating in real-world have generated limited consensus on good practices for accrual, actionable alteration mapping, and outcome metrics. These topics are addressed herein in 124 MTB patients, all real-world accrued at progression, and lacking approved therapy options. METHODS: Actionable genomic alterations identified by tumor DNA (tDNA) and circulating tumor DNA (ctDNA) profiling were mapped by customized OncoKB criteria to reflect diagnostic/therapeutic indications as approved in Europe. Alterations were considered non-SoC when mapped at either OncoKB level 3, regardless of tDNA/ctDNA origin, or at OncoKB levels 1/2, provided they were undetectable in matched tDNA, and had not been exploited in previous therapy lines. RESULTS: Altogether, actionable alterations were detected in 54/124 (43.5%) MTB patients, but only in 39 cases (31%) were these alterations (25 from tDNA, 14 from ctDNA) actionable/unexploited, e.g. they had not resulted in the assignment of pre-MTB treatments. Interestingly, actionable and actionable/unexploited alterations both decreased (37.5% and 22.7% respectively) in a subset of 88 MTB patients profiled by tDNA-only, but increased considerably (77.7% and 66.7%) in 18 distinct patients undergoing combined tDNA/ctDNA testing, approaching the potential treatment opportunities (76.9%) in 147 treatment-naïve patients undergoing routine tDNA profiling for the first time. Non-SoC therapy was MTB-recommended to all 39 patients with actionable/unexploited alterations, but only 22 (56%) accessed the applicable drug, mainly due to clinical deterioration, lengthy drug-gathering procedures, and geographical distance from recruiting clinical trials. Partial response and stable disease were recorded in 8 and 7 of 19 evaluable patients, respectively. The time to progression (TTP) ratio (MTB-recommended treatment vs last pre-MTB treatment) exceeded the conventional Von Hoff 1.3 cut-off in 9/19 cases, high absolute TTP and Von Hoff values coinciding in 3 cases. Retrospectively, 8 patients receiving post-MTB treatment(s) as per physician's choice were noted to have a much longer overall survival from MTB accrual than 11 patients who had received no further treatment (35.09 vs 6.67 months, p = 0.006). CONCLUSIONS: MTB-recommended/non-SoC treatments are effective, including those assigned by ctDNA-only alterations. However, real-world MTBs may inadvertently recruit patients electively susceptible to diverse and/or multiple treatments.


Subject(s)
Neoplasms , United States , Humans , National Cancer Institute (U.S.) , Retrospective Studies , Mutation , Neoplasms/genetics , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing/methods , Biomarkers, Tumor/genetics
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835424

ABSTRACT

Precision medicine has driven a major change in the treatment of many forms of cancer. The discovery that each patient is different and each tumor mass has its own characteristics has shifted the focus of basic and clinical research to the singular individual. Liquid biopsy (LB), in this sense, presents new scenarios in personalized medicine through the study of molecules, factors, and tumor biomarkers in blood such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes and circulating tumor microRNAs (ct-miRNAs). Moreover, its easy application and complete absence of contraindications for the patient make this method applicable in a great many fields. Melanoma, given its highly heterogeneous characteristics, is a cancer form that could significantly benefit from the information linked to liquid biopsy, especially in the treatment management. In this review, we will focus our attention on the latest applications of liquid biopsy in metastatic melanoma and possible developments in the clinical setting.


Subject(s)
Circulating MicroRNA , Melanoma , MicroRNAs , Neoplasms, Second Primary , Neoplastic Cells, Circulating , Humans , Precision Medicine/methods , Liquid Biopsy/methods , DNA, Neoplasm/genetics , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor
9.
J Transl Med ; 20(1): 311, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794567

ABSTRACT

Acute Myeloid Leukaemia (AML) is a haematological malignancy showing a hypervariable landscape of clinical outcomes and phenotypic differences, explainable by heterogeneity at the cellular and molecular level. Among the most common genomic alterations, CBFB-MYH11 rearrangement and FLT3-ITD gene mutations, have opposite clinical significance and are unfrequently associated. We present here a Molecular Case Report in which these two events co-exist an ultra-aggressive phenotype resulting in death in 4 days from hospital admittance. Somatic and germline Whole Exome Sequencing analysis was performed to uncover other putative driver mutations, de-novo genomic structural events or germline clusters increasing cancer insurgence. Only three mutations in LTK, BCAS2 and LGAS9 were found, unlikely causative of the exhibited phenotype, prompting to additional investigation of the rare CBFB-MYH11/ FLT3-ITD scenario.


Subject(s)
Leukemia, Myeloid, Acute , Core Binding Factor beta Subunit/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Myosin Heavy Chains/genetics , Phenotype , fms-Like Tyrosine Kinase 3/genetics
10.
Nucleic Acids Res ; 48(11): 5891-5906, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32421830

ABSTRACT

Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , DNA, Ribosomal/genetics , Genes, rRNA/genetics , RNA Polymerase I/metabolism , Repressor Proteins/metabolism , Transcription, Genetic , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints , Cell Line , Cell Nucleolus/metabolism , Cell Nucleolus/pathology , DNA Damage , DNA, Ribosomal/metabolism , Homeostasis , Humans , Phosphorylation , Pol1 Transcription Initiation Complex Proteins/metabolism , Promoter Regions, Genetic , Repressor Proteins/deficiency , Repressor Proteins/genetics , Ribosomes/metabolism
11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498861

ABSTRACT

New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients' response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.


Subject(s)
Breast Neoplasms , MicroRNAs , Protein Kinase Inhibitors , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Liquid Biopsy , MicroRNAs/genetics , MicroRNAs/therapeutic use , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Purines/pharmacology
12.
J Transl Med ; 19(1): 139, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33794925

ABSTRACT

BACKGROUND: Low T3 syndrome is frequent in patients admitted to intensive care units for critical illness and pneumonia. It has been reported also in patients with COVID-19, Hodgkin disease and chronic lymphocytic leukemia. We analyzed the clinical relevance of Low T3 syndrome in COVID-19 patients and, in particular, in those with associated hematological malignancies. METHODS: Sixty-two consecutive patients, hospitalized during the first wave of SARS-CoV-2 outbreak in Sant'Andrea University Hospital in Rome, were subdivided in 38 patients (Group A), showing low levels of FT3, and in 24 patients (Group B), with normal FT3 serum values. During the acute phase of the disease, we measured serum, radiologic and clinical disease severity markers and scores, in search of possible correlations with FT3 serum values. In addition, in 6 COVID-19 patients, 4 with Low T3 syndrome, including 2 with a hematological malignancy, and 2 with normal FT3 values, we performed, high-dimensional single-cell analysis by mass cytometry, multiplex cytokine assay and gene expression profiling in peripheral blood mononuclear cells (PBMC). RESULTS: Low FT3 serum values were correlated with increased Absolute Neutrophil Count, NLR and dNLR ratios and with reduced total count of CD3+, CD4+ and CD8+ T cells. Low FT3 values correlated also with increased levels of inflammation, tissue damage and coagulation serum markers as well as with SOFA, LIPI and TSS scores. The CyTOF analysis demonstrated reduction of the effector memory and terminal effector subtypes of the CD4+ T lymphocytes. Multiplex cytokine assay indicates that mainly IL-6, IP-10 and MCAF changes are associated with FT3 serum levels, particularly in patients with coexistent hematological malignancies. Gene expression analysis using Nanostring identified four genes differently expressed involved in host immune response, namely CD38, CD79B, IFIT3 and NLRP3. CONCLUSIONS: Our study demonstrates that low FT3 serum levels are associated with severe COVID-19. Our multi-omics approach suggests that T3 is involved in the immune response in COVID-19 and coexistent hematological malignancy and new possible T3 target genes in these patients have been identified.


Subject(s)
COVID-19/complications , Euthyroid Sick Syndromes/complications , Hematologic Neoplasms , Aged , Aged, 80 and over , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/genetics , Humans , Italy , Leukocytes, Mononuclear , Male , Middle Aged , Single-Cell Analysis , Triiodothyronine/blood
13.
EMBO Rep ; 19(3)2018 03.
Article in English | MEDLINE | ID: mdl-29367285

ABSTRACT

Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , High-Throughput Nucleotide Sequencing , Humans , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic/genetics
14.
Int J Mol Sci ; 21(18)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899477

ABSTRACT

We describe an original electroporation protocol for in vivo plasmid DNA transfection. The right hind limbs of C57 mice are exposed to a specifically designed train of permeabilizing electric pulses by transcutaneous application of tailored needle electrodes, immediately after the injection of pEGFP-C1 plasmid encoding GFP (Green Fluorescente Protein). The electroporated rodents show a greater GFP expression than the controls at three different time points (4, 10, and 15 days). The electroporated muscles display only mild interstitial myositis, with a significant increase in inflammatory cell infiltrates. Finally, mild gait abnormalities are registered in electroporated mice only in the first 48 h after the treatment. This protocol has proven to be highly efficient in terms of expression levels of the construct, is easy to apply since it does not require surgical exposure of the muscle and is well tolerated by the animals because it does not cause evident morphological and functional damage to the electroporated muscle.


Subject(s)
Electroporation/methods , Transfection/methods , Animals , Female , Gene Transfer Techniques/trends , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Plasmids/genetics
15.
EMBO J ; 34(9): 1214-30, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25770584

ABSTRACT

Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che-1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress-induced autophagy. Strikingly, Che-1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Multiple Myeloma/pathology , Repressor Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Cell Survival , Female , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice, Nude , Multiple Myeloma/metabolism , Multiprotein Complexes/metabolism , Phosphorylation , Repressor Proteins/genetics , Stress, Physiological , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
16.
J Transl Med ; 17(1): 131, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31014354

ABSTRACT

BACKGROUND: There are no accepted universal biomarkers capable to accurately predict response to immuno-checkpoint inhibitors (ICI). Although recent literature has been flooded with studies on ICI predictive biomarkers, available data show that currently approved companion diagnostics either leave out many possible responders, as in the case of PD-L1 testing for first-line metastatic lung cancer, or apply to a small subset of patients, such as the recently approved treatment for microsatellite instability-high or mismatch repair deficiency tumors. In this study, we conducted a survey of the available data on ICI trials with matched genomic or transcriptomic datasets in order to cross-validate the proposed biomarkers, to assess whether their prediction power was confirmed and, mainly, to investigate if their combination was able to generate a better predictive tool. METHODS: We extracted clinical information and sequencing data details from publicly available datasets, along with a list of possible biomarkers obtained from the recent literature. After an operation of data harmonization, we validated the performance of all the biomarkers taken individually. Furthermore, we tested two strategies to combine the best performing biomarkers in order to improve their predictive value. RESULTS: When considered individually, some of the biomarkers, such as the ImmunoPhenoScore, and the IFN-γ signature, did not confirm their originally proposed predictive power. The best absolute scoring biomarkers are TIDE, one of the ICB resistance signatures and CTLA4 with a mean AUC > 0.66. Among the combinations tested, generalized linear models showed the best performance with an AUC of 0.78. CONCLUSIONS: We confirmed that the available biomarkers, taken individually, fail to provide a satisfactory predictive value. Unfortunately, also combination of some of them only provides marginal improvements. Hence, in order to generate a more robust way to predict ICI efficacy it is necessary to analyze and combine additional biomarkers and interrogate a wider set of clinical data.


Subject(s)
Biomarkers, Tumor/metabolism , Immunotherapy , Area Under Curve , Genes, Neoplasm , Humans , ROC Curve
17.
Gut ; 67(5): 903-917, 2018 05.
Article in English | MEDLINE | ID: mdl-28389531

ABSTRACT

OBJECTIVE: Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies. DESIGN: To discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein microarray (RPPA) and cytogenetic analyses, and validated by immunostainings. DNA replication stress (RS) was increased by employing DNA replication-perturbing or polyploidising agents. RESULTS: The drug-library screening led to the identification of LY2606368 as a potent anti-CSC agent acting in vitro and in vivo in tumour cells from a considerable number of patients (∼36%). By inhibiting checkpoint kinase (CHK)1, LY2606368 affected DNA replication in most CRC-SCs, including RAS-mutated ones, forcing them into premature, lethal mitoses. Parallel genomic, RPPA and cytogenetic analyses indicated that CRC-SCs sensitive to LY2606368 displayed signs of ongoing RS response, including the phosphorylation of RPA32 and ataxia telangiectasia mutated serine/threonine kinase (ATM). This was associated with mutation(s) in TP53 and hyperdiploidy, and made these CRC-SCs exquisitely dependent on CHK1 function. Accordingly, experimental increase of RS sensitised resistant CRC-SCs to LY2606368. CONCLUSIONS: LY2606368 selectively eliminates replication-stressed, p53-deficient and hyperdiploid CRC-SCs independently of RAS mutational status. These results provide a strong rationale for biomarker-driven clinical trials with LY2606368 in patients with CRC.


Subject(s)
Antineoplastic Agents/pharmacology , Checkpoint Kinase 1/drug effects , Colorectal Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Pyrazines/pharmacology , Pyrazoles/pharmacology , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Colorectal Neoplasms/genetics , DNA Replication/drug effects , Humans , Immunohistochemistry , Mutation , Neoplastic Stem Cells/metabolism , Oligonucleotide Array Sequence Analysis , Tumor Suppressor Protein p53/genetics
18.
Int J Cancer ; 143(1): 88-99, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29341112

ABSTRACT

Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cellular Reprogramming Techniques/methods , Epithelial Cells/cytology , Lung Neoplasms/pathology , Aged , Animals , Biopsy , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Colonic Neoplasms/pathology , Epithelial Cells/pathology , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Male , Mice , Middle Aged , Mutation , Neoplasm Transplantation , Phenotype , Stem Cells/cytology , Stem Cells/pathology , Tumor Cells, Cultured
19.
J Transl Med ; 16(1): 247, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180862

ABSTRACT

We have previously reported that nuclear expression of the Hippo transducer TAZ in association with Wnt pathway mutations negatively impacts survival outcomes in advanced gastric cancer (GC) patients. Here, we extended these previous findings by investigating another oncogenic cooperation, namely, the interplay between YAP, the TAZ paralogue, and p53. The molecular output of the YAP-p53 cooperation is dependent on TP53 mutational status. In the absence of mutations, the YAP-p53 crosstalk elicits a pro-apoptotic response, whereas in the presence of TP53 mutations it activates a pro-proliferative transcriptional program. In order to study this phenomenon, we re-analyzed data from 83 advanced GC patients treated with chemotherapy whose tissue samples had been characterized for YAP expression (immunohistochemistry, IHC) and TP53 mutations (deep sequencing). In doing so, we generated a molecular model combining nuclear YAP expression in association with TP53 missense variants (YAP+/TP53mut(mv)). Surprisingly, this signature was associated with a decreased risk of disease progression (multivariate Cox for progression-free survival: HR 0.53, 95% CI 0.30-0.91, p = 0.022). The YAP+/TP53mut(mv) model was also associated with better OS in the subgroup of patients who received chemotherapy beyond the first-line setting (multivariate Cox: HR 0.36, 95% CI 0.16-0.81, p = 0.013). Collectively, our findings suggest that the oncogenic cooperation between YAP and mutant p53 may translate into better survival outcomes. This apparent paradox can be explained by the pro-proliferative program triggered by YAP and mutant p53, that supposedly renders cancer cells more vulnerable to cytotoxic therapies.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Mutation, Missense , Phosphoproteins/genetics , Stomach Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Antineoplastic Agents/therapeutic use , Cell Proliferation , Disease Progression , Disease-Free Survival , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Phosphoproteins/metabolism , Proportional Hazards Models , Regression Analysis , Stomach Neoplasms/mortality , Transcription Factors , Treatment Outcome , Tumor Suppressor Protein p53/metabolism , YAP-Signaling Proteins
20.
J Transl Med ; 16(1): 22, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402328

ABSTRACT

BACKGROUND: An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. METHODS: In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). RESULTS: We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZpos/WNTmut) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZpos/WNTmut signature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZpos/WNTmut signature negatively impacted overall survival. CONCLUSIONS: Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be active in GC, conferring chemoresistant traits that translate into adverse survival outcomes.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mutation/genetics , Protein Serine-Threonine Kinases/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Wnt Signaling Pathway/genetics , Aged , Biomarkers, Tumor/metabolism , Female , Hippo Signaling Pathway , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Neoplasm Staging , Proportional Hazards Models , Survival Analysis , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL