Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Animals (Basel) ; 14(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39061516

ABSTRACT

The present study aimed to determine the effects of dietary Lonicera flos and Sucutellaria baicalensis mixed extract (LSE) supplementation during the late-pregnancy period on the reproductive performance, umbilical cord blood hematological parameters, umbilical cord serum biochemical parameters, immune indices, hormone levels, colostrum ingredients, and immunoglobulin contents of sows. A total of 40 hybrid pregnant sows were randomly assigned to the control group (CON; sows fed a basal diet) and LSE group (LSE; sows fed a basal diet supplemented with 500 g/t PE). The results indicated that dietary LSE supplementation significantly increased (p < 0.05) the number of alive and healthy piglets and the litter weight at birth, and significantly increased (p < 0.05) the platelet counts in umbilical cord blood. Dietary LSE supplementation significantly increased (p < 0.05) the levels of prolactin (PRL) and growth hormone (GH), and the content of interleukin 2 (IL-2) in umbilical cord serum. Moreover, immunoglobulin A (IgA) and immunoglobulin M (IgM) in the colostrum were increased with PE supplementation (p < 0.05). In conclusion, dietary LSE supplementation in late-pregnancy sows could improve reproductive performance and colostrum quality, and could also regulate the levels of reproductive hormone in umbilical cord serum.

2.
Gut Microbes ; 16(1): 2340487, 2024.
Article in English | MEDLINE | ID: mdl-38626129

ABSTRACT

Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1ß (IL-1ß) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Pediatric Obesity , Prevotella , Humans , Child , Animals , Mice , Insulin , Bile Acids and Salts/pharmacology , Blood Glucose , Mice, Obese , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL