Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 147(19): 1444-1460, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36987924

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion (I/R) injury causes cardiac dysfunction to myocardial cell loss and fibrosis. Prevention of cell death is important to protect cardiac function after I/R injury. The process of reperfusion can lead to multiple types of cardiomyocyte death, including necrosis, apoptosis, autophagy, and ferroptosis. However, the time point at which the various modes of cell death occur after reperfusion injury and the mechanisms underlying ferroptosis regulation in cardiomyocytes are still unclear. METHODS: Using a left anterior descending coronary artery ligation mouse model, we sought to investigate the time point at which the various modes of cell death occur after reperfusion injury. To discover the key molecules involved in cardiomyocyte ferroptosis, we performed a metabolomics study. Loss/gain-of-function approaches were used to understand the role of 15-lipoxygenase (Alox15) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) in myocardial I/R injury. RESULTS: We found that apoptosis and necrosis occurred in the early phase of I/R injury, and that ferroptosis was the predominant form of cell death during the prolonged reperfusion. Metabolomic profiling of eicosanoids revealed that Alox15 metabolites accumulated in ferroptotic cardiomyocytes. We demonstrated that Alox15 expression was specifically increased in the injured area of the left ventricle below the suture and colocalized with cardiomyocytes. Furthermore, myocardial-specific knockout of Alox15 in mice alleviated I/R injury and restored cardiac function. 15-Hydroperoxyeicosatetraenoic acid (15-HpETE), an intermediate metabolite derived from arachidonic acid by Alox15, was identified as a trigger for cardiomyocyte ferroptosis. We explored the mechanism underlying its effects and found that 15-HpETE promoted the binding of Pgc1α to the ubiquitin ligase ring finger protein 34, leading to its ubiquitin-dependent degradation. Consequently, attenuated mitochondrial biogenesis and abnormal mitochondrial morphology were observed. ML351, a specific inhibitor of Alox15, increased the protein level of Pgc1α, inhibited cardiomyocyte ferroptosis, protected the injured myocardium, and caused cardiac function recovery. CONCLUSIONS: Together, our results established that Alox15/15-HpETE-mediated cardiomyocyte ferroptosis plays an important role in prolonged I/R injury.


Subject(s)
Arachidonate 15-Lipoxygenase , Ferroptosis , Myocardial Reperfusion Injury , Animals , Mice , Apoptosis , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/pharmacology , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/pharmacology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Necrosis/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Ubiquitins/metabolism , Ubiquitins/pharmacology
2.
Eur Spine J ; 33(1): 224-231, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819602

ABSTRACT

OBJECTIVE: The C3 & C7 dome-hybrid open-door laminoplasty was proven to be an effective treatment for multi-levels cervical spondylotic myelopathy (CSM). However, its superiority over traditional unilateral open-door laminoplasty (UOLP) remains questionable, and no studies have compared the efficacy of this technique with traditional UOLP. This study aimed to compare the effectiveness of C3 & C7 dome-hybrid open-door laminoplasty with traditional UOLP in treating multi-levels CSM. METHODS: A retrospective study of multi-levels CSM with laminoplasty was performed, including 35 cases of traditional UOLP and 27 cases of C3 & C7 dome-hybrid open-door laminoplasty. Radiographic evaluation parameters and clinical outcomes were recorded to evaluate the surgical effectiveness. RESULTS: There was no significant difference in demographic baseline parameters. At the final follow-up, the C2-C7 Cobb angle of the modified group was significantly greater than that of the traditional group (p = 0.026). Meanwhile, the C2-C7 SVA of the modified group was significantly smaller than that of the traditional group (p = 0.009). Clinical outcomes such as VAS, NDI, and SF-12 scores, improved significantly in the modified group compared to the traditional group, while the JOA scores had no significant difference in both groups. There was no significant difference in the overall rate of complications between the two groups. CONCLUSION: Both techniques have satisfactory outcomes in treating multi-levels CSM. Comparing with traditional UOLP, C3 & C7 dome-hybrid open-door laminoplasty has a greater superiority in reducing postoperative neck pain and maintaining the cervical sagittal alignment. It is proven to be a feasible management for patients with multi-levels CSM.


Subject(s)
Laminoplasty , Spinal Cord Diseases , Humans , Laminoplasty/methods , Retrospective Studies , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/surgery , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Treatment Outcome
3.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095131

ABSTRACT

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Subject(s)
Breast Neoplasms , Fibrosarcoma , MicroRNAs , Humans , Female , Paclitaxel/pharmacology , Breast Neoplasms/pathology , Troponin T/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Drug Resistance, Neoplasm/genetics , Apoptosis/genetics , Cell Line, Tumor , Fibrosarcoma/genetics , Fibrosarcoma/drug therapy , Cell Proliferation , MicroRNAs/genetics
4.
J Mol Cell Cardiol ; 180: 69-83, 2023 07.
Article in English | MEDLINE | ID: mdl-37187232

ABSTRACT

Congenital long QT syndrome (LQTS) is characterized by a prolonged QT-interval on an electrocardiogram (ECG). An abnormal prolongation in the QT-interval increases the risk for fatal arrhythmias. Genetic variants in several different cardiac ion channel genes, including KCNH2, are known to cause LQTS. Here, we evaluated whether structure-based molecular dynamics (MD) simulations and machine learning (ML) could improve the identification of missense variants in LQTS-linked genes. To do this, we investigated KCNH2 missense variants in the Kv11.1 channel protein shown to have wild type (WT) like or class II (trafficking-deficient) phenotypes in vitro. We focused on KCNH2 missense variants that disrupt normal Kv11.1 channel protein trafficking, as it is the most common phenotype for LQTS-associated variants. Specifically, we used computational techniques to correlate structural and dynamic changes in the Kv11.1 channel protein PAS domain (PASD) with Kv11.1 channel protein trafficking phenotypes. These simulations unveiled several molecular features, including the numbers of hydrating waters and hydrogen bonding pairs, as well as folding free energy scores, that are predictive of trafficking. We then used statistical and machine learning (ML) (Decision tree (DT), Random forest (RF), and Support vector machine (SVM)) techniques to classify variants using these simulation-derived features. Together with bioinformatics data, such as sequence conservation and folding energies, we were able to predict with reasonable accuracy (≈75%) which KCNH2 variants do not traffic normally. We conclude that structure-based simulations of KCNH2 variants localized to the Kv11.1 channel PASD led to an improvement in classification accuracy. Therefore, this approach should be considered to complement the classification of variant of unknown significance (VUS) in the Kv11.1 channel PASD.


Subject(s)
KCNQ1 Potassium Channel , Long QT Syndrome , Machine Learning , Humans , KCNQ1 Potassium Channel/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Mutation, Missense , Phenotype
5.
J Biol Chem ; 298(7): 102060, 2022 07.
Article in English | MEDLINE | ID: mdl-35605666

ABSTRACT

The ATP-dependent ion pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ in the endoplasmic reticulum to establish a reservoir for cell signaling. Because of its central importance in physiology, the activity of this transporter is tightly controlled via direct interactions with tissue-specific regulatory micropeptides that tune SERCA function to match changing physiological conditions. In the heart, the micropeptide phospholamban (PLB) inhibits SERCA, while dwarf open reading frame (DWORF) stimulates SERCA. These competing interactions determine cardiac performance by modulating the amplitude of Ca2+ signals that drive the contraction/relaxation cycle. We hypothesized that the functions of these peptides may relate to their reciprocal preferences for SERCA binding; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. In the present study, we demonstrated this opposing Ca2+ sensitivity is due to preferential binding of DWORF and PLB to different intermediate states that SERCA samples during the Ca2+ transport cycle. We show PLB binds best to the SERCA E1-ATP state, which prevails at low [Ca2+]. In contrast, DWORF binds most avidly to E1P and E2P states that are more populated when Ca2+ is elevated. Moreover, FRET microscopy revealed dynamic shifts in SERCA-micropeptide binding equilibria during cellular Ca2+ elevations. A computational model showed that DWORF exaggerates changes in PLB-SERCA binding during the cardiac cycle. These results suggest a mechanistic basis for inhibitory versus stimulatory micropeptide function, as well as a new role for DWORF as a modulator of dynamic oscillations of PLB-SERCA regulatory interactions.


Subject(s)
Calcium-Binding Proteins , Calcium , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Adenosine Triphosphate/metabolism , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Humans , Ion Transport , Peptides/metabolism , Protein Binding , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
6.
J Biol Chem ; 298(5): 101865, 2022 05.
Article in English | MEDLINE | ID: mdl-35339486

ABSTRACT

The sodium-potassium ATPase (Na/K-ATPase, NKA) establishes ion gradients that facilitate many physiological functions including action potentials and secondary transport processes. NKA comprises a catalytic subunit (alpha) that interacts closely with an essential subunit (beta) and regulatory transmembrane micropeptides called FXYD proteins. In the heart, a key modulatory partner is the FXYD protein phospholemman (PLM, FXYD1), but the stoichiometry of the alpha-beta-PLM regulatory complex is unknown. Here, we used fluorescence lifetime imaging and spectroscopy to investigate the structure, stoichiometry, and affinity of the NKA-regulatory complex. We observed a concentration-dependent binding of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit as well as lower affinity alpha-alpha and alpha-PLM interactions. These data provide the first evidence that, in intact live cells, the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits. Docking and molecular dynamics (MD) simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with the stoichiometry (alpha-beta-PLM)2.


Subject(s)
Microscopy , Sodium-Potassium-Exchanging ATPase , Cell Membrane/metabolism , Phosphoproteins/metabolism , Phosphorylation , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
7.
J Chem Inf Model ; 63(23): 7487-7498, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38016288

ABSTRACT

Calmodulin (CaM) is a universal regulatory protein that modulates numerous cellular processes by using calcium (Ca2+) as the signal. In smooth muscle cells (SMC), one major target of CaM is myosin light chain kinase (MLCK), a kinase that phosphorylates the myosin regulatory light chain and thereby regulates cell contraction. In the absence of CaM, MLCK remains inhibited by its autoinhibitory domain (AID). While it is well established that CaM activates MLCK, the molecular interactions between these two proteins remain elusive due to the lack of structural data. In this work, we constructed a molecular model of mammalian CaM (mCaM) in complex with MLCK leveraging AlphaFold, published biochemical data, and protein-protein docking. The model, along with a strategic set of CaM mutants including a inhibitory variant soybean CaM isoform 4 (sCaM-4), was subject to molecular dynamics (MD) simulations. Using principal component analysis (PCA), we mapped out the transition path for the removal of the AID from the MLCK kinase domain to provide molecular basis of MLCK activation. Additionally, we established MLCK conformations that correspond to the active and inactive states of the kinase. We showed that mCaM and sCaM-4 cause MLCK to undergo the transition to the active and inactive states, respectively. Using two structural metrics, we computed the probabilities of MLCK activation by different CaM variants, which were in good agreement with the experimental data. Distributions along these metrics revealed that different inhibitory CaM variants impair MLCK activation through unique mechanisms. We finally identified molecular contacts that contribute to the MLCK activation by CaM. Overall, we report a de novo molecular model of CaM-MLCK that provides insights into the molecular mechanism of MLCK activation by CaM. The mechanism requires effective removal of the AID while preserving an active configuration of the kinase domain. This mechanism may be shared by other MLCK isoforms and potentially other structurally similar kinases with CaM-mediated regulatory domains.


Subject(s)
Calmodulin , Myosin-Light-Chain Kinase , Animals , Calcium/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/chemistry , Myosin-Light-Chain Kinase/metabolism , Phosphorylation , Protein Isoforms/metabolism , Protein Processing, Post-Translational
8.
Nanotechnology ; 34(23)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36716478

ABSTRACT

Perovskite materials with excellent optical and electronic properties have huge potential in the research field of photodetectors. Constructing heterojunctions and promoting carrier transportation are significant for the development of perovskite-based optoelectronics devices with high performances. Herein, we demonstrated a CsPbBr3/SnO2heterojunction photodetector and improved the device performances through post-annealing treatment of SnO2film. The results indicated that the electrical properties of SnO2films will make an important impact on carrier extraction, especially for type-II heterojunction. As the electrons transfer layer in CsPbBr3/SnO2type-II heterojunction, defects related to oxygen vacancy should be the key factor to affect carrier concentration, induce carriers' limitation and recombination rate. Under proper annealing temperature for SnO2layer, the recombination rate can decrease to 1.37 × 1021cm3s and the spectral responsivity will be highly increased. This work can enhance the understanding on the photoresponse of perovskite photodetectors, and will be helpful for the further optimization and design of optoelectronic devices based on the perovskite heterojunction.

9.
Nanotechnology ; 35(10)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37848020

ABSTRACT

Van der Waals heterostructures provide a new opportunity for constructing new structures and improving the performance of electronic and optoelectronic devices. However, the existing methods of constructing heterojunctions are still faced with problems such as impurity introduction, or complex preparation process and limited scope of application. Herein, a physisorption method is proposed to composite CuO nanorods on the surface of MoS2nanosheets. CuO nanorods and MoS2form type-Ⅱ heterojunctions, which promotes the separation and transport of photo-generated charge carriers. More importantly, compared with the transfer and coating methods, the physical adsorption method avoids the introduction of auxiliary materials during the whole process of constructing the heterojunction, and therefore effectively reduces the damage and pollution at the interface. The optimized MoS2/CuO heterojunction photodetector achieves a high photoresponsivity of ∼680.1 A W-1and a fast response speed of ∼29µs. The results demonstrate that the physisorption method provides a feasible approach to realize high performance photodetectors with pollution-free interfaces, and it can also be extended to the development of other low-dimensional hybrid heterojunction electronic and optoelectronic devices.

10.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834023

ABSTRACT

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Subject(s)
Actinin , Myofibrils , Humans , Actinin/genetics , Actinin/metabolism , Connectin/genetics , Connectin/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcomeres/metabolism
11.
J Cell Mol Med ; 26(4): 1315-1326, 2022 02.
Article in English | MEDLINE | ID: mdl-35040256

ABSTRACT

Autophagy including mitophagy serves as an important regulatory mechanism in the heart to maintain the cellular homeostasis and to protect against heart damages caused by myocardial infarction (MI). The current study aims to dissect roles of general autophagy and specific mitophagy in regulating cardiac function after MI. By using Beclin1+/- , Fundc1 knockout (KO) and Fundc1 transgenic (TG) mouse models, combined with starvation and MI models, we found that Fundc1 KO caused more severe mitochondrial and cardiac dysfunction damages than Beclin1+/- after MI. Interestingly, Beclin1+/- caused notable decrease of total autophagy without detectable change to mitophagy, and Fundc1 KO markedly suppressed mitophagy but did not change the total autophagy activity. In contrast, starvation increased total autophagy without changing mitophagy while Fundc1 TG elevated total autophagy and mitophagy in mouse hearts. As a result, Fundc1 TG provided much stronger protective effects than starvation after MI. Moreover, Beclin1+/- /Fundc1 TG showed increased total autophagy and mitophagy to a level comparable to Fundc1 TG per se, and completely reversed Beclin1+/- -caused aggravation of mitochondrial and cardiac injury after MI. Our results reveal that mitophagy but not general autophagy contributes predominantly to the cardiac protective effect through regulating mitochondrial function.


Subject(s)
Heart Diseases , Myocardial Infarction , Animals , Membrane Proteins/genetics , Mice , Mitochondria , Mitochondrial Proteins , Mitophagy/genetics , Myocardial Infarction/complications , Myocardial Infarction/genetics
12.
J Chem Inf Model ; 61(10): 5223-5233, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34615359

ABSTRACT

Calmodulin (CaM) serves as an important Ca2+ signaling hub that regulates many protein signaling pathways. Recently, it was demonstrated that plant CaM homologues can regulate mammalian targets, often in a manner that opposes the impact of the mammalian CaM (mCaM). However, the molecular basis of how CaM homologue mutations differentially impact target activation is unclear. To understand these mechanisms, we examined two CaM isoforms found in soybean plants that differentially regulate a mammalian target, calcineurin (CaN). These CaM isoforms, sCaM-1 and sCaM-4, share >90 and ∼78% identity with the mCaM, respectively, and activate CaN with comparable or reduced activity relative to mCaM. We used molecular dynamics (MD) simulations and fluorometric assays of CaN-dependent dephosphorylation of MUF-P to probe whether calcium and protein-protein binding interactions are altered by plant CaMs relative to mCaM as a basis for differential CaN regulation. In the presence of CaN, we found that the two sCaMs' Ca2+ binding properties, such as their predicted coordination of Ca2+ and experimentally measured EC50 [Ca2+] values are comparable to mCaM. Furthermore, the binding of CaM to the CaM binding region (CaMBR) in CaN is comparable among the three CaMs, as evidenced by MD-predicted binding energies and experimentally measured EC50 [CaM] values. However, mCaM and sCaM-1 exhibited binding with a secondary region of CaN's regulatory domain that is weakened for sCaM-4. We speculate that this secondary interaction affects the turnover rate (kcat) of CaN based on our modeling of enzyme activity, which is consistent with our experimental data. Together, our data describe how plant-derived CaM variants alter CaN activity through enlisting interactions other than those directly influencing Ca2+ binding and canonical CaMBR binding, which may additionally play a role in the differential regulation of other mammalian targets.


Subject(s)
Calcineurin , Calmodulin , Amino Acid Sequence , Animals , Calcineurin/metabolism , Calcium/metabolism , Calmodulin/metabolism , Protein Binding , Protein Isoforms/metabolism , Glycine max
13.
Nano Lett ; 20(4): 2654-2659, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32101689

ABSTRACT

Here, we design and engineer an axially asymmetric GaAs/AlGaAs/GaAs (G/A/G) nanowire (NW) photodetector that operates efficiently at room temperature. Based on the I-type band structure, the device can realize a two-dimensional electron-hole tube (2DEHT) structure for the substantial performance enhancement. The 2DEHT is observed to form at the interface on both sides of GaAs/AlGaAs barriers, which constructs effective pathways for both electron and hole transport in reducing the photocarrier recombination and enhancing the device photocurrent. In particular, the G/A/G NW photodetector exhibits a responsivity of 0.57 A/W and a detectivity of 1.83 × 1010 Jones, which are about 7 times higher than those of the pure GaAs NW device. The recombination probability has also been significantly suppressed from 81.8% to 13.2% with the utilization of the 2DEHT structure. All of these can evidently demonstrate the importance of the appropriate band structure design to promote photocarrier generation, separation, and collection for high-performance optoelectronic devices.

14.
J Biol Chem ; 294(37): 13800-13810, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31350338

ABSTRACT

The flavin transferase ApbE plays essential roles in bacterial physiology, covalently incorporating FMN cofactors into numerous respiratory enzymes that use the integrated cofactors as electron carriers. In this work we performed a detailed kinetic and structural characterization of Vibrio cholerae WT ApbE and mutants of the conserved residue His-257, to understand its role in substrate binding and in the catalytic mechanism of this family. Bi-substrate kinetic experiments revealed that ApbE follows a random Bi Bi sequential kinetic mechanism, in which a ternary complex is formed, indicating that both substrates must be bound to the enzyme for the reaction to proceed. Steady-state kinetic analyses show that the turnover rates of His-257 mutants are significantly smaller than those of WT ApbE, and have increased Km values for both substrates, indicating that the His-257 residue plays important roles in catalysis and in enzyme-substrate complex formation. Analyses of the pH dependence of ApbE activity indicate that the pKa of the catalytic residue (pKES1) increases by 2 pH units in the His-257 mutants, suggesting that this residue plays a role in substrate deprotonation. The crystal structures of WT ApbE and an H257G mutant were determined at 1.61 and 1.92 Å resolutions, revealing that His-257 is located in the catalytic site and that the substitution does not produce major conformational changes. We propose a reaction mechanism in which His-257 acts as a general base that deprotonates the acceptor residue, which subsequently performs a nucleophilic attack on FAD for flavin transfer.


Subject(s)
Flavins/metabolism , Transferases/metabolism , Vibrio cholerae/metabolism , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain , Conserved Sequence , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavins/genetics , Histidine/metabolism , Kinetics , Oxidation-Reduction , Substrate Specificity/genetics , Transferases/genetics , Vibrio cholerae/genetics
15.
Cancer Cell Int ; 20: 252, 2020.
Article in English | MEDLINE | ID: mdl-32565736

ABSTRACT

BACKGROUND: Increasing evidence has indicated the important role of long non-coding RNAs (lncRNAs) in regulating the development and progression of cancers, including triple-negative breast cancer (TNBC). Small nucleolar RNA host gene 22 (SNHG22) is a novel lncRNA that has been identified as tumor-contributor in ovarian carcinoma. However, its function has not been explored in TNBC. METHODS: qRT-PCR was used to identify gene expression at mRNA level while western blot was utilized to analyze the protein level. Functional assays were implemented to identify changes on the proliferation, apoptosis and motility of TNBC cells under different conditions. Additionally, mechanistic assays, such as RIP assay, RNA pull down assay and luciferase reporter assay, were applied to assess relationships between molecules. RESULTS: SNHG22 represented a high expression level in TNBC tissues and cells. Besides, SNHG22 silencing restrained the proliferation, migration and invasion of TNBC cells. Furthermore, miR-324-3p that was lowly expressed in TNBC cells was conformed to be sponged by SNHG22. Moreover, upregulated miR-324-3p inhibited cell proliferation and motility in TNBC. Subsequently, we identified that SUDS3, a tumor-facilitator with elevated expression in TNBC, was the downstream target of SNHG22/miR-324-3p axis. Of note, miR-324-3p repression or SUDS3 overexpression could rescue the anti-tumor effect of SNHG22 silencing on the malignant phenotypes of TNBC cells. CONCLUSION: LncRNA SNHG22 facilitated cell growth and motility in TNBC via sponging miR-324-3p and upregulating SUDS3, highlighting a new promising road for TNBC treatment development.

16.
Nanotechnology ; 31(44): 444001, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32585644

ABSTRACT

In semiconductor nanowire (NW) photodetectors, the Schottky barrier formed by the contact between metal and semiconductor can act as a depletion layer. For NW structures with a smaller diameter, the depletion region is especially important to the carrier transport. We prepared a GaAs/AlGaAs quantum well NW photodetector with a two-dimensional electron-hole tube, in which the two-dimensional hole tube (2DHT) formed by the inner layer of GaAs and AlGaAs has the most important role in the regulation of carriers. By adjusting the bias voltage to vary the depth of the depletion region, we have confirmed the influence of the depletion region in a 2DHT. A significant inflection point was found in the responsivity-voltage curve at 1.5 V. By combining the depletion region and 2DHT, the responsivity of the fabricated device was increased by 18 times to 0.199 A W-1 and the detectivity is increased by 5 times to 5.8 × 1010 Jones, compared to the pure GaAs NW photodetector. Reasonable combination of depletion layer and 2DHT was proved to promote high-performance NW photodetector.

17.
J Biochem Mol Toxicol ; 34(12): e22589, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32720422

ABSTRACT

BACKGROUND: The function of miR-20a-5p in pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism remains largely unknown. METHODS: C57BL/6J mice and PASMCs were used for constructing pulmonary artery hypertension (PAH) animal and cell models, respectively. Reverse transcription polymerase chain reaction (RT-PCR) was employed to detect miR-20a-5p and ATP-binding cassette subfamily A member 1 (ABCA1) messenger RNA expression. CCK-8, Transwell, and TUNEL experiments were used to determine PASMCs proliferation, migration, and apoptosis. The relationship between miR-20a-5p and ABCA1 was detected by luciferase reporter experiment, Western blot analysis, and qRT-PCR. RESULTS: miR-20a-5p was remarkably elevated in PASMCs of PAH mice and human PASMCs treated by hypoxia, while ABCA1 was remarkably decreased. After transfection of miR-20a-5p mimics, PASMCs proliferation and migration were promoted and PASMCs apoptosis was suppressed. ABCA1 was confirmed to be a target of miR-20a-5p and restoration of ABCA1 reversed the function of miR-20a-5p. CONCLUSION: miR-20a-5p enhances the proliferation and migration of PASMCs to promote the development of PAH via targeting ABCA1.


Subject(s)
ATP Binding Cassette Transporter 1/physiology , Cell Movement/physiology , Cell Proliferation/physiology , MicroRNAs/physiology , Muscle, Smooth, Vascular/cytology , Pulmonary Artery/cytology , Animals , Apoptosis/physiology , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL
18.
Biosci Biotechnol Biochem ; 84(8): 1621-1628, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32419644

ABSTRACT

A critical pathogenic factor in the development of lethal liver failure is cell death induced by the accumulation of lipid reactive oxygen species. In this study, we discovered and illuminated a new mechanism that led to alcoholic liver disease via ferroptosis, an iron-dependent regulated cell death. Study in vitro showed that both necroptosis inhibitor and ferroptosis inhibitors performed significantly protective effect on alcohol-induced cell death, while apoptosis inhibitor and autophagy inhibitor had no such effect. Our data also indicated that alcohol caused the accumulation of lipid peroxides and the mRNA expression of prostaglandin-endoperoxide synthase 2, reduced the protein expression of the specific light-chain subunit of the cystine/glutamate antiporter and glutathione peroxidase 4. Importantly, ferrostatin-1 significantly ameliorated liver injury that was induced by overdosed alcohol both in vitro and in vivo. These findings highlight that targeting ferroptosis serves as a hepatoprotective strategy for alcoholic liver disease treatment.


Subject(s)
Cyclohexylamines/pharmacology , Ethanol/toxicity , Ferroptosis/drug effects , Iron/metabolism , Liver Diseases, Alcoholic/genetics , Liver/drug effects , Phenylenediamines/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Autophagy/drug effects , Autophagy/genetics , Cell Line , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Disease Models, Animal , Female , Ferroptosis/genetics , Gene Expression Regulation , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Mice , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Signal Transduction , Vitamin E/pharmacology
19.
J Biol Chem ; 293(2): 510-522, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29123027

ABSTRACT

Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an "energy parasite" that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient.


Subject(s)
Chlamydia trachomatis/drug effects , Chlamydia trachomatis/pathogenicity , Adenosine Triphosphate/metabolism , Bacterial Outer Membrane Proteins/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Chlamydia Infections/prevention & control , Chlamydia trachomatis/metabolism , Energy Metabolism/genetics , Energy Metabolism/physiology , HeLa Cells , Host-Pathogen Interactions , Humans , Sodium/metabolism
20.
J Biol Chem ; 293(40): 15664-15677, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30135204

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium responsible for a large number of nosocomial infections. The P. aeruginosa respiratory chain contains the ion-pumping NADH:ubiquinone oxidoreductase (NQR). This enzyme couples the transfer of electrons from NADH to ubiquinone to the pumping of sodium ions across the cell membrane, generating a gradient that drives essential cellular processes in many bacteria. In this study, we characterized P. aeruginosa NQR (Pa-NQR) to elucidate its physiologic function. Our analyses reveal that Pa-NQR, in contrast with NQR homologues from other bacterial species, is not a sodium pump, but rather a completely new form of proton pump. Homology modeling and molecular dynamics simulations suggest that cation selectivity could be determined by the exit ion channels. We also show that Pa-NQR is resistant to the inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). HQNO is a quinolone secreted by P. aeruginosa during infection that acts as a quorum sensing agent and also has bactericidal properties against other bacteria. Using comparative analysis and computational modeling of the ubiquinone-binding site, we identified the specific residues that confer resistance toward this inhibitor. In summary, our findings indicate that Pa-NQR is a proton pump rather than a sodium pump and is highly resistant against the P. aeruginosa-produced compound HQNO, suggesting an important role in the adaptation against autotoxicity. These results provide a deep understanding of the metabolic role of NQR in P. aeruginosa and provide insight into the structural factors that determine the functional specialization in this family of respiratory complexes.


Subject(s)
Bacterial Proteins/chemistry , Electron Transport Complex I/chemistry , Electrons , Protons , Pseudomonas aeruginosa/enzymology , Ubiquinone/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Electron Transport , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydroxyquinolines/pharmacology , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Ubiquinone/metabolism , Vibrio cholerae/drug effects , Vibrio cholerae/enzymology , Vibrio cholerae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL