Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 176(4): 757-774.e23, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30712866

ABSTRACT

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.


Subject(s)
Cell Movement/physiology , Myosin Type II/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Adhesion , Cell Line, Tumor , Cell Movement/immunology , Cytoskeletal Proteins , Female , Humans , Interleukin-1alpha/metabolism , Male , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , Middle Aged , NF-kappa B/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Phosphorylation , Proteomics , Receptor Cross-Talk/physiology , Signal Transduction , Tumor Microenvironment/immunology
2.
Br J Cancer ; 125(5): 699-713, 2021 08.
Article in English | MEDLINE | ID: mdl-34172930

ABSTRACT

BACKGROUND: Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers' ability to metastasise. First anti-metastatic treatments have recently been approved. METHODS: We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. RESULTS: Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. CONCLUSIONS: We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.


Subject(s)
Computational Biology/methods , Melanoma/drug therapy , Myosin Type II/metabolism , Protein Kinase Inhibitors/administration & dosage , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Humans , Male , Mass Spectrometry , Melanoma/metabolism , Mice , Neoplasm Metastasis , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
3.
Circ Res ; 115(10): 857-66, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25201911

ABSTRACT

RATIONALE: Abdominal aortic aneurysms constitute a degenerative process in the aortic wall. Both the miR-29 and miR-15 families have been implicated in regulating the vascular extracellular matrix. OBJECTIVE: Our aim was to assess the effect of the miR-15 family on aortic aneurysm development. METHODS AND RESULTS: Among the miR-15 family members, miR-195 was differentially expressed in aortas of apolipoprotein E-deficient mice on angiotensin II infusion. Proteomics analysis of the secretome of murine aortic smooth muscle cells, after miR-195 manipulation, revealed that miR-195 targets a cadre of extracellular matrix proteins, including collagens, proteoglycans, elastin, and proteins associated with elastic microfibrils, albeit miR-29b showed a stronger effect, particularly in regulating collagens. Systemic and local administration of cholesterol-conjugated antagomiRs revealed better inhibition of miR-195 compared with miR-29b in the uninjured aorta. However, in apolipoprotein E-deficient mice receiving angiotensin II, silencing of miR-29b, but not miR-195, led to an attenuation of aortic dilation. Higher aortic elastin expression was accompanied by an increase of matrix metalloproteinases 2 and 9 in mice treated with antagomiR-195. In human plasma, an inverse correlation of miR-195 was observed with the presence of abdominal aortic aneurysms and aortic diameter. CONCLUSIONS: We provide the first evidence that miR-195 may contribute to the pathogenesis of aortic aneurysmal disease. Although inhibition of miR-29b proved more effective in preventing aneurysm formation in a preclinical model, miR-195 represents a potent regulator of the aortic extracellular matrix. Notably, plasma levels of miR-195 were reduced in patients with abdominal aortic aneurysms suggesting that microRNAs might serve as a noninvasive biomarker of abdominal aortic aneurysms.


Subject(s)
Aortic Aneurysm, Abdominal/blood , MicroRNAs/physiology , Aged , Animals , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Biomarkers/blood , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/blood , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
4.
Nat Cell Biol ; 25(1): 108-119, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36624187

ABSTRACT

Metastasis involves dissemination of cancer cells away from a primary tumour and colonization at distal sites. During this process, the mechanical properties of the nucleus must be tuned since they pose a challenge to the negotiation of physical constraints imposed by the microenvironment and tissue structure. We discovered increased expression of the inner nuclear membrane protein LAP1 in metastatic melanoma cells, at the invasive front of human primary melanoma tumours and in metastases. Human cells express two LAP1 isoforms (LAP1B and LAP1C), which differ in their amino terminus. Here, using in vitro and in vivo models that recapitulate human melanoma progression, we found that expression of the shorter isoform, LAP1C, supports nuclear envelope blebbing, constrained migration and invasion by allowing a weaker coupling between the nuclear envelope and the nuclear lamina. We propose that LAP1 renders the nucleus highly adaptable and contributes to melanoma aggressiveness.


Subject(s)
Melanoma , Nuclear Envelope , Humans , Protein Isoforms/metabolism , Cell Movement , Nuclear Envelope/metabolism , Melanoma/genetics , Melanoma/metabolism , Tumor Microenvironment
5.
Nat Commun ; 11(1): 5315, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082334

ABSTRACT

Melanoma is a highly aggressive tumour that can metastasize very early in disease progression. Notably, melanoma can disseminate using amoeboid invasive strategies. We show here that high Myosin II activity, high levels of ki-67 and high tumour-initiating abilities are characteristic of invasive amoeboid melanoma cells. Mechanistically, we find that WNT11-FZD7-DAAM1 activates Rho-ROCK1/2-Myosin II and plays a crucial role in regulating tumour-initiating potential, local invasion and distant metastasis formation. Importantly, amoeboid melanoma cells express both proliferative and invasive gene signatures. As such, invasive fronts of human and mouse melanomas are enriched in amoeboid cells that are also ki-67 positive. This pattern is further enhanced in metastatic lesions. We propose eradication of amoeboid melanoma cells after surgical removal as a therapeutic strategy.


Subject(s)
Frizzled Receptors/metabolism , Melanoma/metabolism , Microfilament Proteins/metabolism , Wnt Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cell Transformation, Neoplastic , Female , Frizzled Receptors/genetics , Humans , Male , Melanoma/genetics , Melanoma/pathology , Mice , Mice, SCID , Microfilament Proteins/genetics , Myosin Type II/genetics , Myosin Type II/metabolism , Neoplasm Invasiveness , Signal Transduction , Wnt Proteins/genetics , rho GTP-Binding Proteins/genetics , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
6.
JCI Insight ; 2(15)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28768907

ABSTRACT

The increased heme biosynthesis long observed in leukemia was previously of unknown significance. Heme, synthesized from porphyrin precursors, plays a central role in oxygen metabolism and mitochondrial function, yet little is known about its role in leukemogenesis. Here, we show increased expression of heme biosynthetic genes, including UROD, only in pediatric AML samples that have high MYCN expression. High expression of both UROD and MYCN predicts poor overall survival and unfavorable outcomes in adult AML. Murine leukemic progenitors derived from hematopoietic progenitor cells (HPCs) overexpressing a MYCN cDNA (MYCN-HPCs) require heme/porphyrin biosynthesis, accompanied by increased oxygen consumption, to fully engage in self-renewal and oncogenic transformation. Blocking heme biosynthesis reduced mitochondrial oxygen consumption and markedly suppressed self-renewal. Leukemic progenitors rely on balanced production of heme and heme intermediates, the porphyrins. Porphyrin homeostasis is required because absence of the porphyrin exporter, ABCG2, increased death of leukemic progenitors in vitro and prolonged the survival of mice transplanted with Abcg2-KO MYCN-HPCs. Pediatric AML patients with elevated MYCN mRNA display strong activation of TP53 target genes. Abcg2-KO MYCN-HPCs were rescued from porphyrin toxicity by p53 loss. This vulnerability was exploited to show that treatment with a porphyrin precursor, coupled with the absence of ABCG2, blocked MYCN-driven leukemogenesis in vivo, thereby demonstrating that porphyrin homeostasis is a pathway crucial to MYCN leukemogenesis.

7.
PLoS One ; 11(1): e0148155, 2016.
Article in English | MEDLINE | ID: mdl-26824232

ABSTRACT

Prader-Willi Syndrome (PWS), a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR), including a set of small non-translated nucleolar RNA's (snoRNA). Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health and disease.


Subject(s)
Base Sequence , Bone and Bones/metabolism , Genomic Imprinting , Prader-Willi Syndrome/genetics , RNA, Small Nucleolar/genetics , Sequence Deletion , Animals , Bone Density , Bone and Bones/abnormalities , Disease Models, Animal , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Neurons/metabolism , Neurons/pathology , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Prader-Willi Syndrome/metabolism , Prader-Willi Syndrome/pathology , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , RNA, Small Nucleolar/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL