Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
IEEE Sens J ; 24(1): 741-749, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38344259

ABSTRACT

Chronic wounds have emerged as a significant healthcare burden, affecting millions of patients worldwide and presenting a substantial challenge to healthcare systems. The diagnosis and management of chronic wounds are notably intricate, with inappropriate management contributing significantly to the amputation of limbs. In this work, we propose a compact, wireless, battery-free, and multimodal wound monitoring system to facilitate timely and effective wound treatment. The design of this monitoring system draws on the principles of higher-order parity-time symmetry, which incorporates spatially balanced gain, neutral, and loss, embodied by an active -RLC reader, an LC intermediator, and a passive RLC sensor, respectively. Our experimental results demonstrate that this wireless wound sensor can detect temperature (T), relative humidity (RH), pressure (P), and pH with exceptional sensitivity and robustness, which are critical biomarkers for assessing wound healing status. Our in vitro experiments further validate the reliable sensing performance of the wound sensor on human skin and fish. This multifunctional monitoring system may provide a promising solution for the development of futuristic wearable sensors and integrated biomedical microsystems.

2.
MAGMA ; 36(2): 295-308, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37072539

ABSTRACT

OBJECTIVE: Wall shear stress (WSS) and its derived spatiotemporal parameters have proven to play a major role on intracranial aneurysms (IAs) growth and rupture. This study aims to demonstrate how ultra-high field (UHF) 7 T phase contrast magnetic resonance imaging (PC-MRI) coupled with advanced image acceleration techniques allows a highly resolved visualization of near-wall hemodynamic parameters patterns in in vitro IAs, paving the way for more robust risk assessment of their growth and rupture. MATERIALS AND METHODS: We performed pulsatile flow measurements inside three in vitro models of patient-specific IAs using 7 T PC-MRI. To this end, we built an MRI-compatible test bench, which faithfully reproduced a typical physiological intracranial flow rate in the models. RESULTS: The ultra-high field 7 T images revealed WSS patterns with high spatiotemporal resolution. Interestingly, the high oscillatory shear index values were found in the core of low WSS vortical structures and in flow stream intersecting regions. In contrast, maxima of WSS occurred around the impinging jet sites. CONCLUSIONS: We showed that the elevated signal-to-noise ratio arising from 7 T PC-MRI enabled to resolve high and low WSS patterns with a high degree of detail.


Subject(s)
Intracranial Aneurysm , Humans , Intracranial Aneurysm/diagnostic imaging , Blood Flow Velocity , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Hemodynamics , Stress, Mechanical
3.
Sensors (Basel) ; 23(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050710

ABSTRACT

For the first time ever worldwide, this paper proposes, investigates, and validates, by multiple experiments, a new online automatic diagnostic technology for the belt mis-tracking of belt conveyor systems based on motor current signature analysis (MCSA). Three diagnostic technologies were investigated, experimentally evaluated, and compared for conveyor belt mis-tracking diagnosis. The proposed technologies are based on three higher-order spectral diagnostic features: bicoherence, tricoherence, and the cross-correlation of spectral moduli of order 3 (CCSM3). The investigation of the proposed technologies via comprehensive experiments has shown that technology based on the CCSM3 is highly effective for diagnosing a conveyor belt mis-tracking via MCSA.

4.
Pediatr Crit Care Med ; 23(2): 79-88, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35119428

ABSTRACT

OBJECTIVES: Sepsis-induced immunoparalysis represents a pathologic downregulation of leukocyte function shown to be associated with adverse outcomes, although its mechanisms remain poorly understood. Our goal was to compare genome-wide gene expression profiles of immunoparalyzed and nonimmunoparalyzed children with sepsis to identify genes and pathways associated with immunoparalysis. DESIGN: Prospective observational study. PATIENTS: Twenty-six children with lower respiratory tract infection meeting criteria for sepsis, severe sepsis, or septic shock admitted to the PICU. SETTING: Two tertiary care PICUs. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Innate immune function was assayed ex vivo by measuring release of tumor necrosis factor-α from whole blood after incubation with lipopolysaccharide for 4 hours. Immunoparalysis was defined as a tumor necrosis factor-α production capacity less than 200 pg/mL. Ten of the 26 children were immunoparalyzed. There were 17 significant differentially expressed genes when comparing genome-wide gene expression profiles of immunoparalyzed and nonimmunoparalyzed children (false discovery rate < 0.05). Nine genes showed increased expression in immunoparalyzed children (+1.5- to +8.8-fold change). Several of these dampen the immune system. Eight showed decreased expression in immunoparalyzed children (-1.7- to -3.9-fold change), several of which are involved in early regulation and activation of immune function. Functional annotation clustering using differentially expressed genes with p value of less than 0.05 showed three clusters related to immunity with significant enrichment scores (2.2-4.5); the most significant gene ontology terms in these clusters were antigen processing and presentation and negative regulation of interleukin-6 production. Network analysis identified potential protein interactions that may be involved in the development of immunoparalysis in children. CONCLUSIONS: In this exploratory analysis, immunoparalyzed children with sepsis showed increased expression of genes that dampen the immune system and decreased expression of genes involved in regulation and activation of the immune system. Analysis also implicated other proteins as potentially having as yet unidentified roles in the development of immunoparalysis.


Subject(s)
Sepsis , Shock, Septic , Child , Humans , Pilot Projects , Prospective Studies , Shock, Septic/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
5.
Sensors (Basel) ; 22(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36502207

ABSTRACT

Due to the wide use of gearmotor systems in industry, many diagnostic techniques have been developed/employed to prevent their failures. An insufficient lubrication of gearboxes of these machines could shorten their life and lead to catastrophic failures and losses, making it important to ensure a required lubrication level. For the first time in worldwide terms, this paper proposed to diagnose a lack of gearbox oil lubrication using motor current signature analysis (MCSA). This study proposed, investigated, and experimentally validated two new technologies to diagnose a lack of lubrication of gear motor systems based on MCSA. Two new diagnostic features were extracted from the current signals of a three-phase induction motor. The effectiveness of the proposed technologies was evaluated for different gear lubrication levels and was compared for three phases of motor current signals and for a case of averaging the proposed diagnostic features over three phases. The results confirmed a high effectiveness of the proposed technologies for diagnosing a lack of oil lubrication in gearmotor systems. Other contributions were as follows: (i) it was shown for the first time in worldwide terms, that the motor current nonlinearity level increases with the reduction of the sgearbox oil level; (ii) novel experimental validations of the proposed two diagnostic technologies via comprehensive experimental trials (iii) novel experimental comparisons of the diagnosis effectiveness of the proposed two diagnostic technologies.


Subject(s)
Oils , Humans , Diagnostic Equipment
6.
Sensors (Basel) ; 20(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326060

ABSTRACT

We propose a spectrometer-free refractive index sensor based on a graphene plasmonic structure. The spectrometer-free feature of the device is realized thanks to the dynamic tunability of graphene's chemical potential, through electrostatic biasing. The proposed sensor exhibits a 1566 nm/RIU sensitivity, a 250.6 RIU-1 figure of merit in the optical mode of operation and a 713.2 meV/RIU sensitivity, a 246.8 RIU-1 figure of merit in the electrical mode of operation. This performance outlines the optimized operation of this spectrometer-free sensor that simplifies its design and can bring terahertz sensing one step closer to its practical realization, with promising applications in biosensing and/or gas sensing.

7.
Magn Reson Med ; 81(1): 560-572, 2019 01.
Article in English | MEDLINE | ID: mdl-29893989

ABSTRACT

PURPOSE: The morphological and hemodynamic evaluations of neurovascular diseases treated with stents would benefit from noninvasive imaging techniques such as 3D time-of-flight MRI (3D-TOF) and 3D phase contrast MRI (3D-PCMRI). For this purpose, a comprehensive evaluation of the stent artifacts and their impact on the flow measurement is critical. METHODS: The artifacts of a representative sample of neurovascular stents were evaluated in vitro with 3D-TOF and 3D-PCMRI sequences. The dependency of the artifacts with respect to the orientation was analyzed for each stent design as well as the impact on the flow measurement accuracy. Furthermore, the 3D-PCMRI data of four patients carrying intracranial aneurysms treated with flow diverter stents were analyzed as illustrative examples. RESULTS: The stent artifacts were mainly confined to the stent lumen therefore indicating the leading role of shielding effect. The influence of the stent design and its orientation with respect to the transmitting MR coils were highlighted. The artifacts impacted the 3D-PCMRI velocities mainly in the low magnitude domains, which were discarded from the analysis ensuring reliable near-stent velocities. The feasibility of in-stent flow measurements was confirmed in vivo on two patients who showed strong correlation between flow and geometric features. In two other patients, the consistency of out-of-stent velocities was verified qualitatively through intra-aneurysmal streamlines except when susceptibility artifacts occurred. CONCLUSION: The present results motivate the conception of low inductance or nonconductive stent design. Furthermore, the feasibility of near-stent 3D-PCMRI measurements opens the door to clinical applications like the post-treatment follow-up of stenoses or intracranial aneurysms.


Subject(s)
Aneurysm/diagnostic imaging , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Neurons/metabolism , Stents , Algorithms , Artifacts , Blood Flow Velocity , Blood Vessels/metabolism , Cerebrovascular Circulation , Chromium/chemistry , Cobalt/chemistry , Hemodynamics , Humans , Intracranial Aneurysm/diagnostic imaging , Materials Testing , Nickel/chemistry , Reproducibility of Results , Titanium/chemistry , Vascular Surgical Procedures/adverse effects
8.
Magn Reson Med ; 79(1): 129-140, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28244132

ABSTRACT

PURPOSE: Recent advances in 3D-PCMRI (phase contrast MRI) sequences allow for measuring the complex hemodynamics in cerebral arteries. However, the small size of these vessels vs spatial resolution can lead to non-negligible partial volume artifacts, which must be taken into account when computing blood flow rates. For this purpose, we combined the velocity information provided by 3D-PCMRI with vessel geometry measured with 3DTOF (time of flight MRI) or 3DRA (3D rotational angiography) to correct the partial volume effects in flow rate assessments. METHODS: The proposed methodology was first tested in vitro on cylindrical and patient specific vessels subject to fully controlled pulsatile flows. Both 2D- and 3D-PCMRI measurements using various spatial resolutions ranging from 20 to 1.3 voxels per vessel diameter were analyzed and compared with flowmeter baseline. Second, 3DTOF, 2D- and 3D-PCMRI measurements were performed in vivo on 35 patients harboring internal carotid artery (ICA) aneurysms indicated for endovascular treatments requiring 3DRA imaging. RESULTS: The in vitro 2D- and 3D-PCMRI mean flow rates assessed with partial volume correction showed very low sensitivity to the acquisition resolution above ≈2 voxels per vessel diameter while uncorrected flow rates deviated critically when decreasing the spatial resolution. 3D-PCMRI flow rates measured in vivo in ICA agreed very well with 2D-PCMRI data and a good flow conservation was observed at the C7 bifurcation. Globally, partial volume correction led to 10-15% lower flow rates than uncorrected values as those reported in most of the published studies on intracranial flows. CONCLUSION: Partial volume correction may improve the accuracy of PCMRI flow rate measurements especially in small vessels such as intracranial arteries. Magn Reson Med 79:129-140, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Carotid Artery, Internal/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Artifacts , Blood Flow Velocity , Cerebral Arteries/diagnostic imaging , Cerebrovascular Circulation , Female , Hemodynamics , Humans , Intracranial Aneurysm/pathology , Male , Middle Aged , Models, Statistical , Pulsatile Flow
9.
Opt Express ; 26(19): 24792-24803, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469591

ABSTRACT

We make use of transformation optics technique to realize cloaking operation in the light diffusive regime, for spherical objects. The cloak requires spatially heterogeneous anisotropic diffusivity, as well as spatially varying speed of light and absorption. Analytic calculations of Photon's fluence confirm minor role of absorption in reduction of far-field scattering, and a monopole fluence field converging to a constant in the static regime in the invisibility region. The latter is in contrast to acoustic and electromagnetic cloaks, for which the field vanishes inside the core. These results are finally discussed in the context of mass diffusion, where cloaking can be achieved with a heterogeneous anisotropic diffusivity.

10.
Nanotechnology ; 26(16): 164002, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25824491

ABSTRACT

We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded high-permittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

11.
Nanotechnology ; 26(41): 415201, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26403614

ABSTRACT

The nonlinear harmonic sensor is a popular wireless sensor and radiofrequency identification (RFID) technique, which allows high-performance sensing in a severe interference/clutter background by transmitting a radio wave and detecting its modulated higher-order harmonics. Here we introduce the concept and design of optical harmonic tags based on nonlinear nanoantennas that can contactlessly detect electronic (e.g. electron affinity) and optical (e.g. relative permittivity) characteristics of molecules. By using a dual-resonance gold-molecule-silver nanodipole antenna within the quantum mechanical realm, the spectral form of the second-harmonic scattering can sensitively reveal the physical properties of molecules, paving a new route towards optical molecular sensors and optical identification (OPID) of biological, genetic, and medical events for the 'Internet of Nano-Things'.


Subject(s)
Light , Nanotechnology , Photochemical Processes , Radio Frequency Identification Device , Scattering, Radiation , Biosensing Techniques , Electromagnetic Phenomena , Gold/chemistry , Quantum Theory , Radio Waves , Silver/chemistry
12.
Opt Express ; 22(6): 6966-75, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24664045

ABSTRACT

A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing.

13.
J Dairy Res ; 81(2): 173-82, 2014 May.
Article in English | MEDLINE | ID: mdl-24622212

ABSTRACT

In order to evaluate milking ability in dromedary camels, 124 milk flow curves were registered during morning milking of 20 dairy Maghrebi dromedary camels. Animals were in lactations 1-8, were 6-19 years old and were 4-15 months of their current lactation. Milk flow curves were recorded using an electronic milk flow meter (Lactocorder®). Milk flow curves were classified in three typical patterns: type 1 represents curves with one high and short peak of milk flow; type 2 represents curves with a moderate mean milk flow rate during a large plateau phase; and type 3 represents curves with lower mean milk flow rate and a relatively longer milking duration. The ratio of the different milk flow patterns in the population evaluated was 40:38:22% for types 1, 2 and 3, respectively. The highest milk yield per milking, average and peak milk flow were observed in camels with type 1 curves (4·24 kg, 1·49 and 3·54 kg/min, respectively) followed by type 2 animals (3·30 kg, 1·12 and 2·12 kg/min, respectively) and lastly type 3 curves (2·34 kg, 0·65 and 1·23 kg/min, respectively). This study confirmed that a major proportion of dromedary camels have a suitable machine milking ability. Nevertheless, our results suggest that pre-stimulation and improving the milking process may improve milking efficiency and guarantee a more complete and rapid emptying of the udder.


Subject(s)
Camelus/physiology , Dairying/methods , Lactation/physiology , Milk/physiology , Animals , Dairying/instrumentation , Female , Hydrocortisone/blood , Kinetics , Milk Ejection/physiology , Tunisia
14.
Sci Rep ; 14(1): 3051, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321089

ABSTRACT

This paper presents a novel approach to solve the optimal power flow (OPF) problem by utilizing a modified white shark optimization (MWSO) algorithm. The MWSO algorithm incorporates the Gaussian barebones (GB) and quasi-oppositional-based learning (QOBL) strategies to improve the convergence rate and accuracy of the original WSO algorithm. To address the uncertainty associated with renewable energy sources, the IEEE 30 bus system, which consists of 30 buses, 6 thermal generators, and 41 branches, is modified by replacing three thermal generators with two wind generators and one solar PV generator. And the IEEE 57-bus system, which consists of 57 buses, 7 thermal generators, and 80 branches, is also modified by the same concept. The variability of wind and solar generation is described using the Weibull and lognormal distributions, and its impact on the OPF problem is considered by incorporating reserve and penalty costs for overestimation and underestimation of power output. The paper also takes into account the unpredictability of power consumption (load demand) by analyzing its influence using standard probability density functions (PDF). Furthermore, practical conditions related to the thermal generators, such as ramp rate limits are examined. The MWSO algorithm is evaluated and analyzed using 23 standard benchmark functions, and a comparative study is conducted against six well-known techniques using various statistical parameters. The results and statistical analysis demonstrate the superiority and effectiveness of the MWSO algorithm compared to the original WSO algorithm for addressing the OPF problem in the presence of generation and demand uncertainties.

15.
Adv Sci (Weinh) ; : e2402917, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962930

ABSTRACT

The confinement of waves in open systems represents a fundamental phenomenon extensively explored across various branches of wave physics. Recently, significant attention is directed toward bound states in the continuum (BIC), a class of modes that are trapped but do not decay in an otherwise unbounded continuum. Here, the theoretical investigation and experimental demonstration of the existence of quasi-bound states in the continuum (QBIC) for ultrasonic waves are achieved by leveraging an elastic Fabry-Pérot metasurface resonator. Several intriguing properties of the ultrasound quasi-bound states in the continuum that are robust to parameter scanning are unveiled, and experimental evidence of a remarkable Q-factor of 350 at ≈1 MHz frequency, far exceeding the state-of-the-art using a fully acoustic underwater system is presented. The findings contribute novel insights into the understanding of BIC for acoustic waves, offering a new paradigm for the design of efficient, ultra-high Q-factor ultrasound devices.

16.
Opt Express ; 21(10): 12592-603, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736478

ABSTRACT

We demonstrate the possibility of cloaking three-dimensional objects at multi-frequencies in the far-infrared part of the spectrum. The proposed cloaking mechanism exploits graphene layers wrapped around the object to be concealed. Graphene layers are doped via a variable external voltage difference permitting continuous tuning of the cloaking frequencies. Particularly, two configurations are investigated: (i) Only one graphene layer is used to suppress the scattering from a dielectric sphere. (ii) Several of these layers biased at different gate voltages are used to achieve a multi-frequency cloak. These frequencies can be set independently. The proposed cloak's functionality is verified by near- and far-field computations. By considering geometry and material parameters that are realizable by practical experiments, we contribute to the development of graphene based plasmonic applications that may find use in disruptive photonic technologies.


Subject(s)
Graphite/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Refractometry/instrumentation , Refractometry/methods , Equipment Design , Equipment Failure Analysis
17.
Opt Express ; 21(24): 29938-48, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514545

ABSTRACT

An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backed-up with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene's damping factor is increased by lowering its electron mobility to 1000 cm²/Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers.

18.
Phys Rev Lett ; 111(23): 237404, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476303

ABSTRACT

We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

19.
Micromachines (Basel) ; 14(3)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36985010

ABSTRACT

In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic functions that must be flexible and stretchable. Various novel materials have been proposed in recent years to meet the technical challenges posed by this field, which exhibit significant potential for use in different wearable applications. This article reviews recent progress in the development of emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates, conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of nanomaterial-based wearable electronics and provide an outlook on future research directions in this field.

20.
Micromachines (Basel) ; 15(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38258145

ABSTRACT

The intersection of biomedicine and radio frequency (RF) engineering has fundamentally transformed self-health monitoring by leveraging soft and wearable electronic devices. This paradigm shift presents a critical challenge, requiring these devices and systems to possess exceptional flexibility, biocompatibility, and functionality. To meet these requirements, traditional electronic systems, such as sensors and antennas made from rigid and bulky materials, must be adapted through material science and schematic design. Notably, in recent years, extensive research efforts have focused on this field, and this review article will concentrate on recent advancements. We will explore the traditional/emerging materials for highly flexible and electrically efficient wearable electronics, followed by systematic designs for improved functionality and performance. Additionally, we will briefly overview several remarkable applications of wearable electronics in biomedical sensing. Finally, we provide an outlook on potential future directions in this developing area.

SELECTION OF CITATIONS
SEARCH DETAIL