Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 583(7818): 699-710, 2020 07.
Article in English | MEDLINE | ID: mdl-32728249

ABSTRACT

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Subject(s)
DNA/genetics , Databases, Genetic , Genome/genetics , Genomics , Molecular Sequence Annotation , Registries , Regulatory Sequences, Nucleic Acid/genetics , Animals , Chromatin/genetics , Chromatin/metabolism , DNA/chemistry , DNA Footprinting , DNA Methylation/genetics , DNA Replication Timing , Deoxyribonuclease I/metabolism , Genome, Human , Histones/metabolism , Humans , Mice , Mice, Transgenic , RNA-Binding Proteins/genetics , Transcription, Genetic/genetics , Transposases/metabolism
2.
Nucleic Acids Res ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726870

ABSTRACT

The ZFX transcriptional activator binds to CpG island promoters, with a major peak at ∼200-250 bp downstream from transcription start sites. Because ZFX binds within the transcribed region, we investigated whether it regulates transcriptional elongation. We used GRO-seq to show that loss or reduction of ZFX increased Pol2 pausing at ZFX-regulated promoters. To further investigate the mechanisms by which ZFX regulates transcription, we determined regions of the protein needed for transactivation and for recruitment to the chromatin. Interestingly, although ZFX has 13 grouped zinc fingers, deletion of the first 11 fingers produces a protein that can still bind to chromatin and activate transcription. We next used TurboID-MS to detect ZFX-interacting proteins, identifying ZNF593, as well as proteins that interact with the N-terminal transactivation domain (which included histone modifying proteins), and proteins that interact with ZFX when it is bound to the chromatin (which included TAFs and other histone modifying proteins). Our studies support a model in which ZFX enhances elongation at target promoters by recruiting H4 acetylation complexes and reducing pausing.

3.
Nat Immunol ; 14(10): 1073-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24013668

ABSTRACT

C2H2 zinc fingers are found in several key transcriptional regulators in the immune system. However, these proteins usually contain more fingers than are needed for sequence-specific DNA binding, which suggests that different fingers regulate different genes and functions. Here we found that mice lacking finger 1 or finger 4 of Ikaros exhibited distinct subsets of the hematological defects of Ikaros-null mice. Most notably, the two fingers controlled different stages of lymphopoiesis, and finger 4 was selectively required for tumor suppression. The distinct defects support the hypothesis that only a small number of genes that are targets of Ikaros are critical for each of its biological functions. The subcategorization of functions and target genes by mutagenesis of individual zinc fingers will facilitate efforts to understand how zinc-finger transcription factors regulate development, immunity and disease.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Expression Regulation , Ikaros Transcription Factor/genetics , Leukemia/genetics , Lymphopoiesis/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Base Sequence , Binding Sites , Cell Differentiation/genetics , Cell Differentiation/immunology , Chromatin Immunoprecipitation , Cluster Analysis , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Expression Profiling , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Ikaros Transcription Factor/metabolism , Immunophenotyping , Leukemia/metabolism , Leukemia/mortality , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/mortality , Mice , Mice, Knockout , Molecular Sequence Data , Nucleotide Motifs , Phenotype , Position-Specific Scoring Matrices , Protein Binding , Thymocytes/metabolism
5.
PLoS Genet ; 16(9): e1009023, 2020 09.
Article in English | MEDLINE | ID: mdl-32925947

ABSTRACT

Lung cancer is the leading cause of cancer-related death and lung adenocarcinoma is its most common subtype. Although genetic alterations have been identified as drivers in subsets of lung adenocarcinoma, they do not fully explain tumor development. Epigenetic alterations have been implicated in the pathogenesis of tumors. To identify epigenetic alterations driving lung adenocarcinoma, we used an improved version of the Tracing Enhancer Networks using Epigenetic Traits method (TENET 2.0) in primary normal lung and lung adenocarcinoma cells. We found over 32,000 enhancers that appear differentially activated between normal lung and lung adenocarcinoma. Among the identified transcriptional regulators inactivated in lung adenocarcinoma vs. normal lung, NKX2-1 was linked to a large number of silenced enhancers. Among the activated transcriptional regulators identified, CENPA, FOXM1, and MYBL2 were linked to numerous cancer-specific enhancers. High expression of CENPA, FOXM1, and MYBL2 is particularly observed in a subgroup of lung adenocarcinomas and is associated with poor patient survival. Notably, CENPA, FOXM1, and MYBL2 are also key regulators of cancer-specific enhancers in breast adenocarcinoma of the basal subtype, but they are associated with distinct sets of activated enhancers. We identified individual lung adenocarcinoma enhancers linked to CENPA, FOXM1, or MYBL2 that were associated with poor patient survival. Knockdown experiments of FOXM1 and MYBL2 suggest that these factors regulate genes involved in controlling cell cycle progression and cell division. For example, we found that expression of TK1, a potential target gene of a MYBL2-linked enhancer, is associated with poor patient survival. Identification and characterization of key transcriptional regulators and associated enhancers in lung adenocarcinoma provides important insights into the deregulation of lung adenocarcinoma epigenomes, highlighting novel potential targets for clinical intervention.


Subject(s)
Adenocarcinoma of Lung/genetics , Epigenesis, Genetic/genetics , Regulatory Elements, Transcriptional/genetics , Adenocarcinoma/genetics , Adult , Aged , Cell Cycle Proteins/genetics , Epigenomics , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, Homeobox , Humans , Lung/metabolism , Lung Neoplasms/genetics , Male , Middle Aged , Regulatory Sequences, Nucleic Acid/genetics
6.
Nucleic Acids Res ; 48(11): 5986-6000, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32406922

ABSTRACT

Our study focuses on a family of ubiquitously expressed human C2H2 zinc finger proteins comprised of ZFX, ZFY and ZNF711. Although their protein structure suggests that ZFX, ZFY and ZNF711 are transcriptional regulators, the mechanisms by which they influence transcription have not yet been elucidated. We used CRISPR-mediated deletion to create bi-allelic knockouts of ZFX and/or ZNF711 in female HEK293T cells (which naturally lack ZFY). We found that loss of either ZFX or ZNF711 reduced cell growth and that the double knockout cells have major defects in proliferation. RNA-seq analysis revealed that thousands of genes showed altered expression in the double knockout clones, suggesting that these TFs are critical regulators of the transcriptome. To gain insight into how these TFs regulate transcription, we created mutant ZFX proteins and analyzed them for DNA binding and transactivation capability. We found that zinc fingers 11-13 are necessary and sufficient for DNA binding and, in combination with the N terminal region, constitute a functional transactivator. Our functional analyses of the ZFX family provides important new insights into transcriptional regulation in human cells by members of the large, but under-studied family of C2H2 zinc finger proteins.


Subject(s)
CpG Islands/genetics , DNA-Binding Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Promoter Regions, Genetic , Transcription Initiation Site , Alleles , Base Pairing , Base Sequence , DNA-Binding Proteins/genetics , Female , Gene Deletion , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Male , Transcriptome , Zinc Fingers
7.
Genome Res ; 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29429977

ABSTRACT

High expression of the transcription factor ZFX is correlated with proliferation, tumorigenesis, and patient survival in multiple types of human cancers. However, the mechanism by which ZFX influences transcriptional regulation has not been determined. We performed ChIP-seq in four cancer cell lines (representing kidney, colon, prostate, and breast cancers) to identify ZFX binding sites throughout the human genome. We identified ~9,000 ZFX binding sites and found that the majority of the sites are in CpG island promoters. Moreover, genes with promoters bound by ZFX are expressed at higher levels than genes with promoters not bound by ZFX. To determine if ZFX contributes to regulation of the promoters to which it is bound, we performed RNA-seq analysis after knockdown of ZFX by siRNA in prostate and breast cancer cells. Many genes with promoters bound by ZFX were downregulated upon ZFX knockdown, supporting the hypothesis that ZFX acts as a transcriptional activator. Surprisingly, ZFX binds at +240 bp downstream of the TSS of the responsive promoters. Using Nucleosome Occupancy and Methylome Sequencing (NOMe-seq), we show that ZFX binds between the open chromatin region at the TSS and the first downstream nucleosome, suggesting that ZFX may play a critical role in promoter architecture. We have also shown that a closely related zinc finger protein ZNF711 has a similar binding pattern at CpG island promoters, but ZNF711 may play a subordinate role to ZFX. This functional characterization of ZFX provides important new insights into transcription, chromatin structure, and the regulation of the cancer transcriptome.

8.
J Cell Biochem ; 120(3): 3056-3070, 2019 03.
Article in English | MEDLINE | ID: mdl-30548288

ABSTRACT

Distal regulatory elements influence the activity of gene promoters through chromatin looping. Chromosome conformation capture (3C) methods permit identification of chromatin contacts across different regions of the genome. However, due to limitations in the resolution of these methods, the detection of functional chromatin interactions remains a challenge. In the current study, we employ an integrated approach to define and characterize the functional chromatin contacts of human pancreatic cancer cells. We applied tethered chromatin capture to define classes of chromatin domains on a genome-wide scale. We identified three types of structural domains (topologically associated, boundary, and gap) and investigated the functional relationships of these domains with respect to chromatin state and gene expression. We uncovered six distinct sub-domains associated with epigenetic states. Interestingly, specific epigenetically active domains are sensitive to treatment with histone acetyltransferase (HAT) inhibitors and decrease in H3K27 acetylation levels. To examine whether the subdomains that change upon drug treatment are functionally linked to transcription factor regulation, we compared TCF7L2 chromatin binding and gene regulation to HAT inhibition. We identified a subset of coding RNA genes that together can stratify pancreatic cancer patients into distinct survival groups. Overall, this study describes a process to evaluate the functional features of chromosome architecture and reveals the impact of epigenetic inhibitors on chromosome architecture and identifies genes that may provide insight into disease outcome.


Subject(s)
Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chromatin/metabolism , Gene Regulatory Networks , Pancreatic Neoplasms/genetics , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Transcription Factor 7-Like 2 Protein/metabolism , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromatin Assembly and Disassembly , Chromosome Mapping , Epigenesis, Genetic/drug effects , Epigenomics , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Nitrobenzenes , Pancreatic Neoplasms/metabolism , Pyrazolones , Transcription Factor 7-Like 2 Protein/genetics
9.
Mol Cell ; 42(4): 438-50, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21596310

ABSTRACT

We have identified human MBT domain-containing protein L3MBTL2 as an integral component of a protein complex that we termed Polycomb repressive complex 1 (PRC1)-like 4 (PRC1L4), given the copresence of PcG proteins RING1, RING2, and PCGF6/MBLR. PRC1L4 also contained E2F6 and CBX3/HP1γ, known to function in transcriptional repression. PRC1L4-mediated repression necessitated L3MBTL2 that compacted chromatin in a histone modification-independent manner. Genome-wide location analyses identified several hundred genes simultaneously bound by L3MBTL2 and E2F6, preferentially around transcriptional start sites that exhibited little overlap with those targeted by other E2Fs or by L3MBTL1, another MBT domain-containing protein that interacts with RB1. L3MBTL2-specific RNAi resulted in increased expression of target genes that exhibited a significant reduction in H2A lysine 119 monoubiquitination. Our findings highlight a PcG/MBT collaboration that attains repressive chromatin without entailing histone lysine methylation marks.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Ubiquitination , Gene Expression Regulation , Genome-Wide Association Study , HEK293 Cells , Histones/genetics , Humans , Nuclear Proteins/genetics , Polycomb-Group Proteins , Repressor Proteins/genetics , Transcription Factors/genetics
10.
Nucleic Acids Res ; 45(17): 9901-9916, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28973434

ABSTRACT

Distinct epigenomic profiles of histone marks have been associated with gene expression, but questions regarding the causal relationship remain. Here we investigated the activity of a broad collection of genomically targeted epigenetic regulators that could write epigenetic marks associated with a repressed chromatin state (G9A, SUV39H1, Krüppel-associated box (KRAB), DNMT3A as well as the first targetable versions of Ezh2 and Friend of GATA-1 (FOG1)). dCas9 fusions produced target gene repression over a range of 0- to 10-fold that varied by locus and cell type. dCpf1 fusions were unable to repress gene expression. The most persistent gene repression required the action of several effector domains; however, KRAB-dCas9 did not contribute to persistence in contrast to previous reports. A 'direct tethering' strategy attaching the Ezh2 methyltransferase enzyme to dCas9, as well as a 'recruitment' strategy attaching the N-terminal 45 residues of FOG1 to dCas9 to recruit the endogenous nucleosome remodeling and deacetylase complex, were both successful in targeted deposition of H3K27me3. Surprisingly, however, repression was not correlated with deposition of either H3K9me3 or H3K27me3. Our results suggest that so-called repressive histone modifications are not sufficient for gene repression. The easily programmable dCas9 toolkit allowed precise control of epigenetic information and dissection of the relationship between the epigenome and gene regulation.


Subject(s)
Chromatin/chemistry , Endonucleases/genetics , Epigenomics/methods , Gene Silencing , Histones/genetics , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Endonucleases/metabolism , Gene Editing , HCT116 Cells , HEK293 Cells , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Genome Res ; 25(4): 467-77, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25747664

ABSTRACT

The holistic role of DNA methylation in the organization of the cancer epigenome is not well understood. Here we perform a comprehensive, high-resolution analysis of chromatin structure to compare the landscapes of HCT116 colon cancer cells and a DNA methylation-deficient derivative. The NOMe-seq accessibility assay unexpectedly revealed symmetrical and transcription-independent nucleosomal phasing across active, poised, and inactive genomic elements. DNA methylation abolished this phasing primarily at enhancers and CpG island (CGI) promoters, with little effect on insulators and non-CGI promoters. Abolishment of DNA methylation led to the context-specific reestablishment of the poised and active states of normal colon cells, which were marked in methylation-deficient cells by distinct H3K27 modifications and the presence of either well-phased nucleosomes or nucleosome-depleted regions, respectively. At higher-order genomic scales, we found that long, H3K9me3-marked domains had lower accessibility, consistent with a more compact chromatin structure. Taken together, our results demonstrate the nuanced and context-dependent role of DNA methylation in the functional, multiscale organization of cancer epigenomes.


Subject(s)
Chromatin/genetics , Colonic Neoplasms/genetics , DNA Methylation/genetics , Cell Line, Tumor , CpG Islands/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/biosynthesis , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic , HCT116 Cells , Histones/genetics , Humans , Nucleosomes/genetics , Promoter Regions, Genetic/genetics , DNA Methyltransferase 3B
12.
Nucleic Acids Res ; 44(9): 4123-33, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26743005

ABSTRACT

Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with increased risk for colorectal cancer (CRC). A molecular understanding of the functional consequences of this genetic variation is complicated because most GWAS SNPs are located in non-coding regions. We used epigenomic information to identify H3K27Ac peaks in HCT116 colon cancer cells that harbor SNPs associated with an increased risk for CRC. Employing CRISPR/Cas9 nucleases, we deleted a CRC risk-associated H3K27Ac peak from HCT116 cells and observed large-scale changes in gene expression, resulting in decreased expression of many nearby genes. As a comparison, we showed that deletion of a robust H3K27Ac peak not associated with CRC had minimal effects on the transcriptome. Interestingly, although there is no H3K27Ac peak in HEK293 cells in the E7 region, deletion of this region in HEK293 cells decreased expression of several of the same genes that were downregulated in HCT116 cells, including the MYC oncogene. Accordingly, deletion of E7 causes changes in cell culture assays in HCT116 and HEK293 cells. In summary, we show that effects on the transcriptome upon deletion of a distal regulatory element cannot be predicted by the size or presence of an H3K27Ac peak.


Subject(s)
Gene Expression Regulation, Neoplastic , Histones/metabolism , Transcriptome , Acetylation , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Enhancer Elements, Genetic , Genome-Wide Association Study , HCT116 Cells , HEK293 Cells , Humans , Papillomavirus E7 Proteins/genetics , Polymorphism, Single Nucleotide , Protein Processing, Post-Translational , Sequence Deletion
13.
Crit Rev Biochem Mol Biol ; 50(6): 550-73, 2015.
Article in English | MEDLINE | ID: mdl-26446758

ABSTRACT

Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer-target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Promoter Regions, Genetic , Animals , Chromatin/chemistry , Chromatin/genetics , Epigenomics/methods , Humans , Transcriptome
14.
Mol Cell ; 36(4): 667-81, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19941826

ABSTRACT

GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for crossregulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2-negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis.


Subject(s)
Chromatin/metabolism , GATA1 Transcription Factor/metabolism , GATA2 Transcription Factor/metabolism , Genome, Human/genetics , Hematopoietic System/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromatin Immunoprecipitation , Computational Biology , Gene Expression Profiling , Genetic Loci , Homeostasis , Humans , K562 Cells , Leukemia/metabolism , Leukemia/pathology , Mice , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Sequence Analysis, DNA , T-Cell Acute Lymphocytic Leukemia Protein 1
15.
PLoS Genet ; 10(1): e1004102, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497837

ABSTRACT

Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process.


Subject(s)
Enhancer Elements, Genetic , Molecular Sequence Annotation/classification , Prostatic Neoplasms/genetics , Response Elements/genetics , Alleles , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Risk Factors , Transcription Factors/genetics
16.
Proc Natl Acad Sci U S A ; 111(17): 6131-8, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24753594

ABSTRACT

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.


Subject(s)
DNA/genetics , Genome, Human/genetics , Biological Evolution , Disease/genetics , Humans , Regulatory Sequences, Nucleic Acid/genetics , Software
17.
Genome Res ; 23(9): 1522-40, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23804400

ABSTRACT

DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element repression, genomic imprinting, and tissue-specific gene expression. Sequencing-based DNA methylation profiling provides an unprecedented opportunity to map and compare complete DNA methylomes. This includes one of the most widely applied technologies for measuring DNA methylation: methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq), coupled with a complementary method, methylation-sensitive restriction enzyme sequencing (MRE-seq). A computational approach that integrates data from these two different but complementary assays and predicts methylation differences between samples has been unavailable. Here, we present a novel integrative statistical framework M&M (for integration of MeDIP-seq and MRE-seq) that dynamically scales, normalizes, and combines MeDIP-seq and MRE-seq data to detect differentially methylated regions. Using sample-matched whole-genome bisulfite sequencing (WGBS) as a gold standard, we demonstrate superior accuracy and reproducibility of M&M compared to existing analytical methods for MeDIP-seq data alone. M&M leverages the complementary nature of MeDIP-seq and MRE-seq data to allow rapid comparative analysis between whole methylomes at a fraction of the cost of WGBS. Comprehensive analysis of nineteen human DNA methylomes with M&M reveals distinct DNA methylation patterns among different tissue types, cell types, and individuals, potentially underscoring divergent epigenetic regulation at different scales of phenotypic diversity. We find that differential DNA methylation at enhancer elements, with concurrent changes in histone modifications and transcription factor binding, is common at the cell, tissue, and individual levels, whereas promoter methylation is more prominent in reinforcing fundamental tissue identities.


Subject(s)
Algorithms , DNA Methylation , Genome, Human , Sequence Analysis, DNA/methods , Data Interpretation, Statistical , High-Throughput Nucleotide Sequencing/methods , Humans , Organ Specificity
18.
Nat Methods ; 10(10): 992-5, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23955773

ABSTRACT

Variability in the quality of antibodies to histone post-translational modifications (PTMs) is a widely recognized hindrance in epigenetics research. Here, we produced recombinant antibodies to the trimethylated lysine residues of histone H3 with high specificity and affinity and no lot-to-lot variation. These recombinant antibodies performed well in common epigenetics applications, and enabled us to identify positive and negative correlations among histone PTMs.


Subject(s)
Antibodies/immunology , Antibody Affinity , Histones/immunology , Lysine/immunology , Protein Processing, Post-Translational , Animals , Antibodies/genetics , Binding Sites, Antibody , Cell Line , Escherichia coli/genetics , Histones/chemistry , Histones/genetics , Humans , Lysine/chemistry , Lysine/genetics , Peptide Library , Sensitivity and Specificity , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
19.
Nucleic Acids Res ; 42(16): 10856-68, 2014.
Article in English | MEDLINE | ID: mdl-25122745

ABSTRACT

Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼ 5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications.


Subject(s)
Epigenesis, Genetic , Transcription Factors/metabolism , Zinc Fingers , Binding Sites , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Genome, Human , Humans , MCF-7 Cells , Promoter Regions, Genetic , Protein Binding , Transcription Factors/chemistry
20.
Genome Res ; 22(11): 2262-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22960372

ABSTRACT

Biologists possess the detailed knowledge critical for extracting biological insight from genome-wide data resources, and yet they are increasingly faced with nontrivial computational analysis challenges posed by genome-scale methodologies. To lower this computational barrier, particularly in the early data exploration phases, we have developed an interactive pattern discovery and visualization approach, Spark, designed with epigenomic data in mind. Here we demonstrate Spark's ability to reveal both known and novel epigenetic signatures, including a previously unappreciated binding association between the YY1 transcription factor and the corepressor CTBP2 in human embryonic stem cells.


Subject(s)
Genome, Human , Search Engine , Sequence Analysis, DNA/methods , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Cluster Analysis , Co-Repressor Proteins , DNA Methylation , Embryonic Stem Cells/chemistry , Epigenesis, Genetic , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL