Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 14217, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902282

ABSTRACT

As interest in using machine learning models to support clinical decision-making increases, explainability is an unequivocal priority for clinicians, researchers and regulators to comprehend and trust their results. With many clinical datasets containing a range of modalities, from the free-text of clinician notes to structured tabular data entries, there is a need for frameworks capable of providing comprehensive explanation values across diverse modalities. Here, we present a multimodal masking framework to extend the reach of SHapley Additive exPlanations (SHAP) to text and tabular datasets to identify risk factors for companion animal mortality in first-opinion veterinary electronic health records (EHRs) from across the United Kingdom. The framework is designed to treat each modality consistently, ensuring uniform and consistent treatment of features and thereby fostering predictability in unimodal and multimodal contexts. We present five multimodality approaches, with the best-performing method utilising PetBERT, a language model pre-trained on a veterinary dataset. Utilising our framework, we shed light for the first time on the reasons each model makes its decision and identify the inclination of PetBERT towards a more pronounced engagement with free-text narratives compared to BERT-base's predominant emphasis on tabular data. The investigation also explores the important features on a more granular level, identifying distinct words and phrases that substantially influenced an animal's life status prediction. PetBERT showcased a heightened ability to grasp phrases associated with veterinary clinical nomenclature, signalling the productivity of additional pre-training of language models.


Subject(s)
Electronic Health Records , Pets , Animals , Machine Learning , United Kingdom/epidemiology , Risk Factors , Cats , Dogs
2.
Front Vet Sci ; 11: 1352239, 2024.
Article in English | MEDLINE | ID: mdl-38322169

ABSTRACT

The development of natural language processing techniques for deriving useful information from unstructured clinical narratives is a fast-paced and rapidly evolving area of machine learning research. Large volumes of veterinary clinical narratives now exist curated by projects such as the Small Animal Veterinary Surveillance Network (SAVSNET) and VetCompass, and the application of such techniques to these datasets is already (and will continue to) improve our understanding of disease and disease patterns within veterinary medicine. In part one of this two part article series, we discuss the importance of understanding the lexical structure of clinical records and discuss the use of basic tools for filtering records based on key words and more complex rule based pattern matching approaches. We discuss the strengths and weaknesses of these approaches highlighting the on-going potential value in using these "traditional" approaches but ultimately recognizing that these approaches constrain how effectively information retrieval can be automated. This sets the scene for the introduction of machine-learning methodologies and the plethora of opportunities for automation of information extraction these present which is discussed in part two of the series.

SELECTION OF CITATIONS
SEARCH DETAIL