Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 32(12): 2093-2102, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36928917

ABSTRACT

BACKGROUND: To understand the shared genetic basis between colorectal cancer (CRC) and other cancers and identify potential pleiotropic loci for compensating the missing genetic heritability of CRC. METHODS: We conducted a systematic genome-wide pleiotropy scan to appraise associations between cancer-related genetic variants and CRC risk among European populations. Single nucleotide polymorphism (SNP)-set analysis was performed using data from the UK Biobank and the Study of Colorectal Cancer in Scotland (10 039 CRC cases and 30 277 controls) to evaluate the overlapped genetic regions for susceptibility of CRC and other cancers. The variant-level pleiotropic associations between CRC and other cancers were examined by CRC genome-wide association study meta-analysis and the pleiotropic analysis under composite null hypothesis (PLACO) pleiotropy test. Gene-based, co-expression and pathway enrichment analyses were performed to explore potential shared biological pathways. The interaction between novel genetic variants and common environmental factors was further examined for their effects on CRC. RESULTS: Genome-wide pleiotropic analysis identified three novel SNPs (rs2230469, rs9277378 and rs143190905) and three mapped genes (PIP4K2A, HLA-DPB1 and RTEL1) to be associated with CRC. These genetic variants were significant expressions quantitative trait loci in colon tissue, influencing the expression of their mapped genes. Significant interactions of PIP4K2A and HLA-DPB1 with environmental factors, including smoking and alcohol drinking, were observed. All mapped genes and their co-expressed genes were significantly enriched in pathways involved in carcinogenesis. CONCLUSION: Our findings provide an important insight into the shared genetic basis between CRC and other cancers. We revealed several novel CRC susceptibility loci to help understand the genetic architecture of CRC.


Subject(s)
Colorectal Neoplasms , Genome-Wide Association Study , Humans , Colorectal Neoplasms/genetics , Risk , Genetic Loci , Alcohol Drinking , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease , Phosphotransferases (Alcohol Group Acceptor)
2.
Br J Cancer ; 130(9): 1585-1591, 2024 May.
Article in English | MEDLINE | ID: mdl-38480934

ABSTRACT

BACKGROUND: To investigate the association between circulating 25-hydroxyvitamin D (25-OHD) and colorectal cancer (CRC) survival outcomes. METHODS: We conducted analyses among the Study of Colorectal Cancer in Scotland (SOCCS) and the UK Biobank (UKBB). Both cancer-specific survival (CSS) and overall survival (OS) outcomes were examined. The 25-OHD levels were categorised into three groups, and multi-variable Cox-proportional hazard models were applied to estimate hazard ratios (HRs). We performed individual-level Mendelian randomisation (MR) through the generated polygenic risk scores (PRS) of 25-OHD and summary-level MR using the inverse-variance weighted (IVW) method. RESULTS: We observed significantly poorer CSS (HR = 0.65,95%CI = 0.55-0.76,P = 1.03 × 10-7) and OS (HR = 0.66,95%CI = 0.58-0.75,P = 8.15 × 10-11) in patients with the lowest compared to those with the highest 25-OHD after adjusting for covariates. These associations remained across patients with varied tumour sites and stages. However, we found no significant association between 25-OHD PRS and either CSS (HR = 0.98,95%CI = 0.80-1.19,P = 0.83) or OS (HR = 1.07,95%CI = 0.91-1.25,P = 0.42). Furthermore, we found no evidence for causal effects by conducting summary-level MR analysis for either CSS (IVW:HR = 1.04,95%CI = 0.85-1.28,P = 0.70) or OS (IVW:HR = 1.10,95%CI = 0.93-1.31,P = 0.25). CONCLUSION: This study supports the observed association between lower circulating 25-OHD and poorer survival outcomes for CRC patients. Whilst the genotype-specific association between better outcomes and higher 25-OHD is intriguing, we found no support for causality using MR approaches.


Subject(s)
Colorectal Neoplasms , Mendelian Randomization Analysis , Vitamin D , Vitamin D/analogs & derivatives , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Vitamin D/blood , Male , Female , Prospective Studies , Middle Aged , Aged , Scotland/epidemiology , Proportional Hazards Models , Adult
3.
Genet Med ; 26(2): 100992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37800450

ABSTRACT

PURPOSE: The Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) was established by the International Society for Gastrointestinal Hereditary Tumours and the Clinical Genome Resource, who set out to develop recommendations for the interpretation of germline APC variants underlying Familial Adenomatous Polyposis, the most frequent hereditary polyposis syndrome. METHODS: Through a rigorous process of database analysis, literature review, and expert elicitation, the APC VCEP derived gene-specific modifications to the ACMG/AMP (American College of Medical Genetics and Genomics and Association for Molecular Pathology) variant classification guidelines and validated such criteria through the pilot classification of 58 variants. RESULTS: The APC-specific criteria represented gene- and disease-informed specifications, including a quantitative approach to allele frequency thresholds, a stepwise decision tool for truncating variants, and semiquantitative evaluations of experimental and clinical data. Using the APC-specific criteria, 47% (27/58) of pilot variants were reclassified including 14 previous variants of uncertain significance (VUS). CONCLUSION: The APC-specific ACMG/AMP criteria preserved the classification of well-characterized variants on ClinVar while substantially reducing the number of VUS by 56% (14/25). Moving forward, the APC VCEP will continue to interpret prioritized lists of VUS, the results of which will represent the most authoritative variant classification for widespread clinical use.


Subject(s)
Adenomatous Polyposis Coli , Genetic Testing , Humans , Genetic Testing/methods , Genetic Variation , Adenomatous Polyposis Coli/diagnosis , Adenomatous Polyposis Coli/genetics , Germ-Line Mutation/genetics , Germ Cells
4.
Int J Cancer ; 153(8): 1477-1486, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37449541

ABSTRACT

Aberrant smoking-related DNA methylation has been widely investigated as a carcinogenesis mechanism, but whether the cross-cancer epigenetic pathways exist remains unclear. We conducted two-sample Mendelian randomization (MR) analyses respectively on smoking behaviors (age of smoking initiation, smoking initiation, smoking cessation, and lifetime smoking index [LSI]) and smoking-related DNA methylation to investigate their effect on 15 site-specific cancers, based on a genome-wide association study (GWAS) of 1.2 million European individuals and an epigenome-WAS (EWAS) of 5907 blood samples of Europeans for smoking and 15 GWASs of European ancestry for multiple site-specific cancers. Significantly identified CpG sites were further used for colocalization analysis, and those with cross-cancer effect were validated by overlapping with tissue-specific eQTLs. In the genomic MR, smoking measurements of smoking initiation, smoking cessation and LSI were suggested to be casually associated with risk of seven types of site-specific cancers, among which cancers at lung, cervix and colorectum were provided with strong evidence. In the epigenetic MR, methylation at 75 CpG sites were reported to be significantly associated with increased risks of multiple cancers. Eight out of 75 CpG sites were observed with cross-cancer effect, among which cg06639488 (EFNA1), cg12101586 (CYP1A1) and cg14142171 (HLA-L) were validated by eQTLs at specific cancer sites, and cg07932199 (ATXN2) had strong evidence to be associated with cancers of lung (coefficient, 0.65, 95% confidence interval [CI], 0.31-1.00), colorectum (0.90 [0.61, 1.18]), breast (0.31 [0.20, 0.43]) and endometrium (0.98 [0.68, 1.27]). These findings highlight the potential practices targeting DNA methylation-involved cross-cancer pathways.


Subject(s)
DNA Methylation , Neoplasms , Female , Humans , Smoking/adverse effects , Smoking/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Neoplasms/epidemiology , Neoplasms/genetics , CpG Islands/genetics
5.
Br J Cancer ; 129(8): 1306-1313, 2023 10.
Article in English | MEDLINE | ID: mdl-37608097

ABSTRACT

BACKGROUND: Tobacco smoking is suggested as a risk factor for colorectal cancer (CRC), but the complex relationship and the potential pathway are not fully understood. METHODS: We performed two-sample Mendelian randomisation (MR) analyses with genetic instruments for smoking behaviours and related DNA methylation in blood and summary-level GWAS data of colorectal cancer to disentangle the relationship. Colocalization analyses and prospective gene-environment interaction analyses were also conducted as replication. RESULTS: Convincing evidence was identified for the pathogenic effect of smoking initiation on CRC risk and suggestive evidence was observed for the protective effect of smoking cessation in the univariable MR analyses. Multivariable MR analysis revealed that these associations were independent of other smoking phenotypes and alcohol drinking. Genetically predicted methylation at CpG site cg17823346 [ZMIZ1] were identified to decrease CRC risk; while genetically predicted methylation at cg02149899 would increase CRC risk. Colocalization and gene-environment interaction analyses added further evidence to the relationship between epigenetic modification at cg17823346 [ZMIZ1] as well as cg02149899 and CRC risk. DISCUSSION: Our study confirms the significant association between tobacco smoking, DNA methylation and CRC risk and yields a novel insight into the pathogenic effect of tobacco smoking on CRC risk.


Subject(s)
Colorectal Neoplasms , Smoking , Humans , Smoking/adverse effects , DNA Methylation , Prospective Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Tobacco Smoking , Genome-Wide Association Study , Polymorphism, Single Nucleotide
6.
FASEB J ; 36(1): e22082, 2022 01.
Article in English | MEDLINE | ID: mdl-34918389

ABSTRACT

Vitamin D deficiency is associated with risk of several common cancers, including colorectal cancer (CRC). Here we have utilized patient derived epithelial organoids (ex vivo) and CRC cell lines (in vitro) to show that calcitriol (1,25OHD) increased the expression of the CRC tumor suppressor gene, CDH1, at both the transcript and protein level. Whole genome expression analysis demonstrated significant differential expression of a further six genes after 1,25OHD treatment, including genes with established links to carcinogenesis GADD45, EFTUD1 and KIAA1199. Furthermore, gene ontologies relevant to carcinogenesis were enriched by 1,25OHD treatment (e.g., 'regulation of Wnt signaling pathway', 'regulation of cell death'), with common enriched processes across in vitro and ex vivo cultures including 'negative regulation of cell proliferation', 'regulation of cell migration' and 'regulation of cell differentiation'. Our results identify genes and pathways that are modifiable by calcitriol that have links to CRC tumorigenesis. Hence the findings provide potential mechanism to the epidemiological and clinical trial data indicating a causal association between vitamin D and CRC. We suggest there is strong rationale for further well-designed trials of vitamin D supplementation as a novel CRC chemopreventive and chemotherapeutic agent.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Proteins/biosynthesis , Neoplasms/metabolism , Transcriptome/drug effects , Vitamin D/analogs & derivatives , Caco-2 Cells , HCT116 Cells , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Vitamin D/pharmacology
7.
Int J Cancer ; 150(2): 303-307, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34449871

ABSTRACT

Epidemiological evidence is consistent with a protective effect of vitamin D against colorectal cancer (CRC), but the observed strong associations are open to confounders and potential reverse causation. Previous Mendelian randomisation (MR) studies were limited by poor genetic instruments and inadequate statistical power. Moreover, whether genetically higher CRC risk can influence vitamin D level, namely the reverse causation, still remains unknown. Herein, we report the first bidirectional MR study. We employed 110 newly identified genetic variants as proxies for vitamin D to obtain unconfounded effect estimates on CRC risk in 26 397 CRC cases and 41 481 controls of European ancestry. To test for reserve causation, we estimated effects of 115 CRC-risk variants on vitamin D level among 417 580 participants from the UK Biobank. The causal association was estimated using the random-effect inverse-variance weighted (IVW) method. We found no significant causal effect of vitamin D on CRC risk [IVW estimate odds ratio: 0.97, 95% confidence interval (CI) = 0.88-1.07, P = .565]. Similarly, no significant reverse causal association was identified between genetically increased CRC risk and vitamin D levels (IVW estimate ß: -0.002, 95% CI = -0.008 to 0.004, P = .543). Stratified analysis by tumour sites did not identify significant causal associations in either direction between vitamin D and colon or rectal cancer. Despite the improved statistical power of this study, we found no evidence of causal association of either direction between circulating vitamin D and CRC risk. Significant associations reported by observational studies may be primarily driven by unidentified confounders.


Subject(s)
Colorectal Neoplasms/epidemiology , Genome-Wide Association Study , Mendelian Randomization Analysis/statistics & numerical data , Polymorphism, Single Nucleotide , Vitamin D/blood , Vitamins/blood , Case-Control Studies , Causality , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Follow-Up Studies , Humans , Prognosis , Risk Factors , United Kingdom/epidemiology
8.
Br J Cancer ; 126(5): 822-830, 2022 03.
Article in English | MEDLINE | ID: mdl-34912076

ABSTRACT

BACKGROUND: Associations between colorectal cancer (CRC) and other health outcomes have been reported, but these may be subject to biases, or due to limitations of observational studies. METHODS: We set out to determine whether genetic predisposition to CRC is also associated with the risk of other phenotypes. Under the phenome-wide association study (PheWAS) and tree-structured phenotypic model (TreeWAS), we studied 334,385 unrelated White British individuals (excluding CRC patients) from the UK Biobank cohort. We generated a polygenic risk score (PRS) from CRC genome-wide association studies as a measure of CRC risk. We performed sensitivity analyses to test the robustness of the results and searched the Danish Disease Trajectory Browser (DTB) to replicate the observed associations. RESULTS: Eight PheWAS phenotypes and 21 TreeWAS nodes were associated with CRC genetic predisposition by PheWAS and TreeWAS, respectively. The PheWAS detected associations were from neoplasms and digestive system disease group (e.g. benign neoplasm of colon, anal and rectal polyp and diverticular disease). The results from the TreeWAS corroborated the results from the PheWAS. These results were replicated in the observational data within the DTB. CONCLUSIONS: We show that benign colorectal neoplasms share genetic aetiology with CRC using PheWAS and TreeWAS methods. Additionally, CRC genetic predisposition is associated with diverticular disease.


Subject(s)
Colorectal Neoplasms/pathology , Genome-Wide Association Study/methods , Phenomics/methods , Polymorphism, Single Nucleotide , Adult , Aged , Biological Specimen Banks , Colorectal Neoplasms/genetics , Female , Humans , Male , Middle Aged , Phenotype , United Kingdom
9.
Glycobiology ; 31(2): 82-88, 2021 02 09.
Article in English | MEDLINE | ID: mdl-32521004

ABSTRACT

Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.


Subject(s)
Glycosyltransferases/metabolism , Membrane Proteins/metabolism , Cohort Studies , Computational Biology , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Polysaccharides/metabolism
10.
Int J Cancer ; 148(11): 2774-2778, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33411955

ABSTRACT

Previous studies using additive genetic models failed to identify robust evidence of associations between colorectal cancer (CRC) risk variants and survival outcomes. However, additive models can be prone to false negative detection if the underlying inheritance mode is recessive. Here, we tested all currently known CRC-risk variants (n = 129) in a discovery analysis of 5675 patients from a Scottish cohort. Significant associations were then validated in 2474 CRC cases from UK Biobank. We found that the TT genotype of the intron variant rs7495132 in the CRTC3 gene was associated with clinically relevant poorer CRC-specific survival in both the discovery (hazard ratio [HR] = 1.97, 95% confidence interval [CI] = 1.41-2.74, P = 6.1 × 10-5 ) and validation analysis (HR = 1.69, 95% CI = 1.03-2.79, P = .038). In addition, the GG genotype of rs10161980 (intronic variant of AL139383.1 lncRNA) was associated with worse overall survival in the discovery cohort (HR = 1.24, 95% CI = 1.10-1.39, P = 3.4 × 10-4 ) and CRC-specific survival in the validation cohort (HR = 1.26, 95% CI = 1.01-1.56, P = .040). Our findings show that common genetic risk factors can also influence CRC survival outcome.


Subject(s)
Colorectal Neoplasms/mortality , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Aged , Biological Specimen Banks , Colorectal Neoplasms/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Scotland , Survival Analysis
11.
Int J Cancer ; 149(5): 1100-1108, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33937989

ABSTRACT

Site-specific variation in colorectal cancer (CRC) incidence, biology and prognosis are poorly understood. We sought to determine whether common genetic variants influencing CRC risk might exhibit topographical differences on CRC risk through regional differences in effects on gene expression in the large bowel mucosa. We conducted a site-specific genetic association study (10 630 cases, 31 331 controls) to identify whether established risk variants exert differential effects on risk of proximal, compared to distal CRC. We collected normal colorectal mucosa and blood from 481 subjects and assessed mucosal gene expression using Illumina HumanHT-12v4 arrays in relation to germline genotype. Expression quantitative trait loci (eQTLs) were explored by anatomical location of sampling. The rs3087967 genotype (chr11q23.1 risk variant) exhibited significant site-specific effects-risk of distal CRC (odds ratio [OR] = 1.20, P = 8.20 × 10-20 ) with negligible effects on proximal CRC risk (OR = 1.05, P = .10). Expression of 1261 genes differed between proximal and distal colonic mucosa (top hit PRAC gene, fold-difference = 10, P = 3.48 × 10-57 ). In eQTL studies, rs3087967 genotype was associated with expression of 8 cis- and 21 trans-genes. Four of these (AKAP14, ADH5P4, ASGR2, RP11-342M1.7) showed differential effects by site, with strongest trans-eQTL signals in proximal colonic mucosa (eg, AKAP14, beta = 0.61, P = 5.02 × 10-5 ) and opposite signals in distal mucosa (AKAP14, beta = -0.17, P = .04). In summary, genetic variation at the chr11q23.1 risk locus imparts greater risk of distal rather than proximal CRC and exhibits site-specific differences in eQTL effects in normal mucosa. Topographical differences in genomic control over gene expression relevant to CRC risk may underlie site-specific variation in CRC. Results may inform individualised CRC screening programmes.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Intestinal Mucosa/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Female , Follow-Up Studies , Genome-Wide Association Study , Genotype , Humans , Intestinal Mucosa/pathology , Male , Middle Aged , Prognosis , Risk Factors , Transcriptome , Young Adult
12.
Hum Mol Genet ; 28(12): 2062-2077, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31163085

ABSTRACT

Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits. We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area.


Subject(s)
Fucosyltransferases/genetics , Glycosyltransferases/genetics , Polysaccharides/blood , Chromatography, High Pressure Liquid , Cohort Studies , Fucosyltransferases/blood , Fucosyltransferases/chemistry , Genome-Wide Association Study , Glucuronosyltransferase/blood , Glucuronosyltransferase/chemistry , Glycosylation , Hepatocyte Nuclear Factor 1-alpha/blood , Hepatocyte Nuclear Factor 1-alpha/chemistry , Humans , Immunoglobulin G/metabolism , Membrane Proteins/metabolism , Polymorphism, Genetic , Quantitative Trait Loci
13.
Br J Cancer ; 124(6): 1169-1174, 2021 03.
Article in English | MEDLINE | ID: mdl-33414539

ABSTRACT

BACKGROUND: Epidemiological studies of the relationship between gallstone disease and circulating levels of bilirubin with risk of developing colorectal cancer (CRC) have been inconsistent. To address possible confounding and reverse causation, we examine the relationship between these potential risk factors and CRC using Mendelian randomisation (MR). METHODS: We used two-sample MR to examine the relationship between genetic liability to gallstone disease and circulating levels of bilirubin with CRC in 26,397 patients and 41,481 controls. We calculated the odds ratio per genetically predicted SD unit increase in log bilirubin levels (ORSD) for CRC and tested for a non-zero causal effect of gallstones on CRC. Sensitivity analysis was applied to identify violations of estimator assumptions. RESULTS: No association between either gallstone disease (P value = 0.60) or circulating levels of bilirubin (ORSD = 1.00, 95% confidence interval (CI) = 0.96-1.03, P value = 0.90) with CRC was shown. CONCLUSIONS: Despite the large scale of this study, we found no evidence for a causal relationship between either circulating levels of bilirubin or gallstone disease with risk of developing CRC. While the magnitude of effect suggested by some observational studies can confidently be excluded, we cannot exclude the possibility of smaller effect sizes and non-linear relationships.


Subject(s)
Cholelithiasis/epidemiology , Colorectal Neoplasms/epidemiology , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Cholelithiasis/complications , Cholelithiasis/genetics , Colorectal Neoplasms/complications , Colorectal Neoplasms/genetics , Genome-Wide Association Study , Humans , Prognosis , Risk Factors , United Kingdom/epidemiology
14.
Br J Cancer ; 124(7): 1330-1338, 2021 03.
Article in English | MEDLINE | ID: mdl-33510439

ABSTRACT

BACKGROUND: We conducted a Mendelian randomisation (MR) study to investigate whether physical activity (PA) causes a reduction of colorectal cancer risk and to understand the contributions of effects mediated through changes in body fat. METHODS: Common genetic variants associated with self-reported moderate-to-vigorous PA (MVPA), acceleration vector magnitude PA (AMPA) and sedentary time were used as instrumental variables. To control for confounding effects of obesity, we included instrumental variables for body mass index (BMI), body fat percentage, waist circumference and arm, trunk and leg fat ratios. We analysed the effect of these instrumental variables in a colorectal cancer genome-wide association study comprising 31,197 cases and 61,770 controls of European ancestry by applying two-sample and multivariable MR study designs. RESULTS: We found decreased colorectal cancer risk for genetically represented measures of MVPA and AMPA that were additional to effects mediated through genetic measures of obesity. Odds ratio and 95% confidence interval (CI) per standard deviation increase in MVPA and AMPA was 0.56 (0.31, 1.01) and 0.60 (0.41, 0.88), respectively. No association has been found between sedentary time and colorectal cancer risk. The proportion of effect mediated through BMI was 2% (95% CI: 0, 14) and 32% (95% CI: 12, 46) for MVPA and AMPA, respectively. CONCLUSION: These findings provide strong evidence to reinforce public health measures on preventing colorectal cancer that promote PA at a population level regardless of body fatness.


Subject(s)
Adiposity , Body Mass Index , Colorectal Neoplasms/epidemiology , Exercise , Mendelian Randomization Analysis/methods , Obesity/complications , Sedentary Behavior , Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Europe , Genome-Wide Association Study , Humans , Obesity/epidemiology , Obesity/genetics , Prognosis , Risk Factors
15.
Gut ; 69(8): 1460-1471, 2020 08.
Article in English | MEDLINE | ID: mdl-31818908

ABSTRACT

OBJECTIVE: To provide an understanding of the role of common genetic variations in colorectal cancer (CRC) risk, we report an updated field synopsis and comprehensive assessment of evidence to catalogue all genetic markers for CRC (CRCgene2). DESIGN: We included 869 publications after parallel literature review and extracted data for 1063 polymorphisms in 303 different genes. Meta-analyses were performed for 308 single nucleotide polymorphisms (SNPs) in 158 different genes with at least three independent studies available for analysis. Scottish, Canadian and Spanish data from genome-wide association studies (GWASs) were incorporated for the meta-analyses of 132 SNPs. To assess and classify the credibility of the associations, we applied the Venice criteria and Bayesian False-Discovery Probability (BFDP). Genetic associations classified as 'positive' and 'less-credible positive' were further validated in three large GWAS consortia conducted in populations of European origin. RESULTS: We initially identified 18 independent variants at 16 loci that were classified as 'positive' polymorphisms for their highly credible associations with CRC risk and 59 variants at 49 loci that were classified as 'less-credible positive' SNPs; 72.2% of the 'positive' SNPs were successfully replicated in three large GWASs and the ones that were not replicated were downgraded to 'less-credible' positive (reducing the 'positive' variants to 14 at 11 loci). For the remaining 231 variants, which were previously reported, our meta-analyses found no evidence to support their associations with CRC risk. CONCLUSION: The CRCgene2 database provides an updated list of genetic variants related to CRC risk by using harmonised methods to assess their credibility.


Subject(s)
Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , Adaptor Proteins, Signal Transducing/genetics , Antigens, CD/genetics , Bone Morphogenetic Protein 2/genetics , Cadherins/genetics , DNA Glycosylases/genetics , Genetic Association Studies , Genetic Loci , Humans , Smad7 Protein/genetics , Telomerase/genetics , Transforming Growth Factor beta1/genetics
16.
Int J Cancer ; 147(12): 3431-3437, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32638365

ABSTRACT

Increasing numbers of common genetic variants associated with colorectal cancer (CRC) have been identified. Our study aimed to determine whether risk prediction based on common genetic variants might enable stratification for CRC risk. Meta-analysis of 11 genome-wide association studies comprising 16 871 cases and 26 328 controls was performed to capture CRC susceptibility variants. Genetic prediction models with several candidate polygenic risk scores (PRSs) were generated from Scottish CRC case-control studies (6478 cases and 11 043 controls) and the score with the best performance was then tested in UK Biobank (UKBB) (4800 cases and 20 287 controls). A weighted PRS of 116 CRC single nucleotide polymorphisms (wPRS116 ) was found with the best predictive performance, reporting a c-statistics of 0.60 and an odds ratio (OR) of 1.46 (95% confidence interval [CI] = 1.41-1.50, per SD increase) in Scottish data set. The predictive performance of this wPRS116 was consistently validated in UKBB data set with c-statistics of 0.61 and an OR of 1.49 (95% CI = 1.44-1.54, per SD increase). Modeling the levels of PRS with age and sex in the general UK population shows that employing genetic risk profiling can achieve a moderate degree of risk discrimination that could be helpful to identify a subpopulation with higher CRC risk due to genetic susceptibility.


Subject(s)
Colorectal Neoplasms/epidemiology , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Case-Control Studies , Colorectal Neoplasms/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Models, Genetic , Multifactorial Inheritance
17.
Br J Cancer ; 123(11): 1705-1712, 2020 11.
Article in English | MEDLINE | ID: mdl-32929196

ABSTRACT

BACKGROUND: Low circulating vitamin D levels are associated with poor colorectal cancer (CRC) survival. We assess whether vitamin D supplementation improves CRC survival outcomes. METHODS: PubMed and Web of Science were searched. Randomised controlled trial (RCTs) of vitamin D supplementation reporting CRC mortality were included. RCTs with high risk of bias were excluded from analysis. Random-effects meta-analysis models calculated estimates of survival benefit with supplementation. The review is registered on PROSPERO, registration number: CRD42020173397. RESULTS: Seven RCTs (n = 957 CRC cases) were identified: three trials included patients with CRC at outset, and four population trials reported survival in incident cases. Two RCTs were excluded from meta-analysis (high risk of bias; no hazard ratio (HR)). While trials varied in inclusion criteria, intervention dose and outcomes, meta-analysis found a 30% reduction in adverse CRC outcomes with supplementation (n = 815, HR = 0.70; 95% confidence interval (CI): 0.48-0.93). A beneficial effect was seen in trials of CRC patients (progression-free survival, HR = 0.65; 95% CI: 0.36-0.94), with suggestive effect in incident CRC cases from population trials (CRC-specific survival, HR = 0.76; 95% CI: 0.39-1.13). No heterogeneity or publication bias was noted. CONCLUSIONS: Meta-analysis demonstrates a clinically meaningful benefit of vitamin D supplementation on CRC survival outcomes. Further well-designed, adequately powered RCTs are needed to fully evaluate benefit of supplementation in augmenting 'real-life' follow-up and adjuvant chemotherapy regimens, as well as determining optimal dosing.


Subject(s)
Colorectal Neoplasms/mortality , Dietary Supplements , Vitamin D , Disease Progression , Humans
18.
Int J Cancer ; 145(9): 2315-2329, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30536881

ABSTRACT

The cause of colorectal cancer (CRC) is multifactorial, involving both genetic variants and environmental risk factors. We systematically searched the MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI) and Wanfang databases from inception to December 2016, to identify systematic reviews and meta-analyses of observational studies that investigated gene-environment (G×E) interactions in CRC risk. Then, we critically evaluated the cumulative evidence for the G×E interactions using an extension of the Human Genome Epidemiology Network's Venice criteria. Overall, 15 articles reporting systematic reviews of observational studies on 89 G×E interactions, 20 articles reporting meta-analyses of candidate gene- or single-nucleotide polymorphism-based studies on 521 G×E interactions, and 8 articles reporting 33 genome-wide G×E interaction analyses were identified. On the basis of prior and observed scores, only the interaction between rs6983267 (8q24) and aspirin use was found to have a moderate overall credibility score as well as main genetic and environmental effects. Though 5 other interactions were also found to have moderate evidence, these interaction effects were tenuous due to the lack of main genetic effects and/or environmental effects. We did not find highly convincing evidence for any interactions, but several associations were found to have moderate strength of evidence. Our conclusions are based on application of the Venice criteria which were designed to provide a conservative assessment of G×E interactions and thus do not include an evaluation of biological plausibility of an observed joint effect.


Subject(s)
Aspirin/therapeutic use , Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , Chromosomes, Human, Pair 8/genetics , Gene-Environment Interaction , Genetic Predisposition to Disease , Humans , Observational Studies as Topic , Risk Factors , Systematic Reviews as Topic
19.
Int J Cancer ; 145(9): 2427-2432, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31271446

ABSTRACT

Genome-wide association studies have thus far identified 130 genetic variants linked to colorectal cancer (CRC) risk (r2 < 0.2). Given their implication in disease causation, and thus plausible biologically effects on cancer-relevant biological pathways, we investigated whether these variants are associated with CRC prognosis and also whether they might provide predictive value for survival outcome. We conducted the analysis in a well-characterized population-based study of 5,675 patients after CRC diagnosis in Scotland. None of the genetic risk variants were associated with either overall survival (OS) or CRC-specific survival. Next, we combined the variants in a polygenic risk score, but again we observed no association between survival outcome and overall genetic susceptibility to CRC risk-as defined by common genetic variants (OS: hazard ratio = 1.00, 95% confidence interval = 0.96-1.05). Furthermore, we found no incremental increase in the discriminative performance when adding these genetic variants to the baseline CRC-survival predictive model of age, sex and stage at diagnosis. Given that our study is well-powered (>0.88) to detect effects on survival for 74% of the variants, we conclude that effects of common variants associated with CRC risk which have been identified to date are unlikely to have clinically relevant effect on survival outcomes for patients diagnosed with CRC.


Subject(s)
Colorectal Neoplasms/etiology , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Aged , Cohort Studies , Colorectal Neoplasms/pathology , Female , Genome-Wide Association Study/methods , Genotype , Humans , Male , Middle Aged , Prognosis , Risk Factors , Scotland
20.
Int J Cancer ; 142(3): 540-546, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28960316

ABSTRACT

Genome-wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted a genome-wide association study in 1,701 CRC cases and 14,082 cancer-free controls from the Finnish population. A total of 9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and 12,356 controls of European ancestry. The previously reported association between the single-nucleotide polymorphism (SNP) rs992157 (2q35) and CRC was independently replicated (p = 2.08 × 10-4 ; OR, 1.14; 95% CI, 1.06-1.23), and it was genome-wide significant in combined analysis (p = 1.50 × 10-9 ; OR, 1.12; 95% CI, 1.08-1.16). Variants at 2q35, 6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC in the Finnish population (false discovery rate < 0.1), but new risk loci were not found. These results replicate the effects of multiple loci on the risk of CRC and identify shared risk alleles between the Finnish population isolate and outbred populations.


Subject(s)
Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Case-Control Studies , Cohort Studies , Estonia/epidemiology , Finland/epidemiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Registries
SELECTION OF CITATIONS
SEARCH DETAIL