ABSTRACT
The interaction structure of mutualistic relationships, in terms of relative specialization of the partners, is important to understanding their ecology and evolution. Analyses of the mutualistic interaction between anemonefish and their host sea anemones show that the relationship is highly nested in structure, generalist species interacting with one another and specialist species interacting mainly with generalists. This supports the hypothesis that the configuration of mutualistic interactions will tend towards nestedness. In this case, the structure of the interaction is at a much larger scale than previously hypothesized, across more than 180 degrees of longitude and some 60 degrees of latitude, probably owing to the pelagic dispersal capabilities of these species in a marine environment. Additionally, we found weak support for the hypothesis that geographically widespread species should be more generalized in their interactions than species with small ranges. This study extends understanding of the structure of mutualistic relationships into previously unexplored taxonomic and physical realms, and suggests how nestedness analysis can be applied to the conservation of obligate species interactions.
Subject(s)
Ecosystem , Perciformes/physiology , Sea Anemones/physiology , Animals , Species Specificity , SymbiosisABSTRACT
BACKGROUND: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. RESULTS: There are â¼226,000 eukaryotic marine species described. More species were described in the past decade (â¼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are â¼170,000 synonyms, that 58,000-72,000 species are collected but not yet described, and that 482,000-741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7-1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. CONCLUSIONS: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century.
Subject(s)
Aquatic Organisms , Biodiversity , Databases, Factual , Animals , Models, StatisticalABSTRACT
We describe a new species of carcinoecium-forming sea anemone, Stylobates birtlesisp. n., from sites 590-964 m deep in the Coral Sea, off the coast of Queensland, Australia. An anemone of this genus settles on a gastropod shell inhabited by a hermit crab, then covers and extends the shell to produce a chitinous structure termed a carcinoecium. Stylobates birtlesisp. n. is symbiotic with the hermit crab Sympagurus trispinosus (Balss, 1911). The nature of marginal sphincter muscle and nematocyst size and distribution distinguish Stylobates birtlesi sp. n. from other species in the genus. The four known species of Stylobates are allopatric, each inhabiting a separate ocean basin of the Indo-West Pacific. We also extend the known range of Stylobates loisetteae in the Indian Ocean off the coast of Western Australia.