Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001188

ABSTRACT

Since light propagation in a multimode fiber (MMF) exhibits visually random and complex scattering patterns due to external interference, this study numerically models temperature and curvature through the finite element method in order to understand the complex interactions between the inputs and outputs of an optical fiber under conditions of temperature and curvature interference. The systematic analysis of the fiber's refractive index and bending loss characteristics determined its critical bending radius to be 15 mm. The temperature speckle atlas is plotted to reflect varying bending radii. An optimal end-to-end residual neural network model capable of automatically extracting highly similar scattering features is proposed and validated for the purpose of identifying temperature and curvature scattering maps of MMFs. The viability of the proposed scheme is tested through numerical simulations and experiments, the results of which demonstrate the effectiveness and robustness of the optimized network model.

2.
Sensors (Basel) ; 22(14)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35890850

ABSTRACT

Impact force refers to a transient phenomenon with a very short-acting time, but a large impulse. Therefore, the detection of impact vibration is critical for the reliability, stability, and overall life of mechanical parts. Accordingly, this paper proposes a method to indirectly characterize the impact force by using an impact stress wave. The LS-DYNA software is utilized to establish the model of a ball impacting the steel plate, and the impact force of the ball and the impact response of the detection point are obtained through explicit dynamic finite element analysis. In addition, on this basis, a correspondence between the impact force and the impact response is established, and finally, an experimental platform for impact force detection is built for experimental testing. The results obtained by the finite element method are in good agreement with the experimental measurement results, and it can be inferred that the detected piezoelectric signal can be used to characterize the impact force. The method proposed herein can guide the impact resistance design and safety assessment of structures in actual engineering applications.


Subject(s)
Software , Vibration , Finite Element Analysis , Reproducibility of Results
3.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236232

ABSTRACT

Butt welding is extensively applied in long-distance oil and gas pipelines, and it is of great significance to conduct non-destructive ultrasonic testing of girth welds in order to avoid leakage and safety accidents during pipeline production and operation. In view of the limitations of large transducer size, single fixed beam angle, low detection resolution and high cost of conventional ultrasonic inspection technologies, a 16-channel piezoelectric micro ultrasonic transducer (PMUT) array probe was developed through theoretical analysis and structural optimization design. After the probe impedance characterization, the experimental results show that the theoretical model can effectively guide the design of the ultrasonic transducer array, offering the maximum operating frequency deviation of less than 5%. The ultrasonic echo performance tests indicate that the average -6 dB bandwidth of the PMUT array probe can be up to 77.9%. In addition, the fabricated PMUT array probe has been used to successfully detect five common internal defects in pipeline girth welds. Due to the multiple micro array elements, flexible handling of each element, large bandwidth and high resolution of defect detection, the designed PMUT array probe can provide a good application potential in structural health monitoring and medical ultrasound imaging fields.


Subject(s)
Ultrasonics , Welding , Equipment Design , Transducers , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL