Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232281

ABSTRACT

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Subject(s)
Adenosine Triphosphate , Methane , Methane/metabolism , Electron Transport , Adenosine Triphosphate/metabolism , Energy Metabolism , Biological Transport , Methanosarcina/metabolism
2.
Proc Natl Acad Sci U S A ; 120(27): e2304306120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364127

ABSTRACT

Understanding the fundamental interaction of nanoparticles at plant interfaces is critical for reaching field-scale applications of nanotechnology-enabled plant agriculture, as the processes between nanoparticles and root interfaces such as root compartments and root exudates remain largely unclear. Here, using iron deficiency-induced plant chlorosis as an indicator phenotype, we evaluated the iron transport capacity of Fe3O4 nanoparticles coated with citrate (CA) or polyacrylic acid (PAA) in the plant rhizosphere. Both nanoparticles can be used as a regulator of plant hormones to promote root elongation, but they regulate iron deficiency in plant in distinctive ways. In acidic root exudates secreted by iron-deficient Arabidopsis thaliana, CA-coated particles released fivefold more soluble iron by binding to acidic exudates mainly through hydrogen bonds and van der Waals forces and thus, prevented iron chlorosis more effectively than PAA-coated particles. We demonstrate through roots of mutants and visualization of pH changes that acidification of root exudates primarily originates from root tips and the synergistic mode of nanoparticle uptake and transformation in different root compartments. The nanoparticles entered the roots mainly through the epidermis but were not affected by lateral roots or root hairs. Our results show that magnetic nanoparticles can be a sustainable source of iron for preventing leaf chlorosis and that nanoparticle surface coating regulates this process in distinctive ways. This information also serves as an urgently needed theoretical basis for guiding the application of nanomaterials in agriculture.


Subject(s)
Anemia, Hypochromic , Arabidopsis , Iron Deficiencies , Magnetite Nanoparticles , Iron/metabolism , Biological Transport , Anemia, Hypochromic/metabolism , Arabidopsis/metabolism , Plant Roots/metabolism
3.
BMC Cancer ; 24(1): 368, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519974

ABSTRACT

OBJECTIVE: This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). METHODS: This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). RESULTS: A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. CONCLUSION: The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Artificial Intelligence , Algorithms , Eosine Yellowish-(YS) , Tomography, X-Ray Computed
4.
Anal Chem ; 95(34): 12785-12793, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37565453

ABSTRACT

Studies on the adverse effects of nanoplastics (NPs, particle diameter <1000 nm) including physical damage, oxidative stress, impaired cell signaling, altered metabolism, developmental defects, and possible genetic damage have intensified in recent years. However, the analytical detection of NPs is still a bottleneck. To overcome this bottleneck and obtain a reliable and quantitative distribution analysis in complex freshwater ecosystems, an easily applicable NP tracer to simulate their fate and behavior is needed. Here, size- and surface charge-tunable core-shell Au@Nanoplastics (Au@NPs) were synthesized to study the environmental fate of NPs in an artificial freshwater system. The Au core enables the quantitative detection of NPs, while the polystyrene shell exhibits NP properties. The Au@NPs showed excellent resistance to environmental factors (e.g., 1% hydrogen peroxide solution, simulating gastric fluid, acids, and alkalis) and high recovery rates (>80%) from seawater, lake water, sewage, waste sludge, soil, and sediment. Both positively and negatively charged NPs significantly inhibited the growth of duckweed (Lemna minor L.) but had little effect on the growth of cyanobacteria (Microcystis aeruginosa). In addition, the accumulation of positively and negatively charged NPs in cyanobacteria occurred in a concentration-dependent manner, with positively charged NPs more easily taken up by cyanobacteria. In contrast, negatively charged NPs were more readily internalized in duckweed. This study developed a model using a core-shell Au@NP tracer to study the environmental fate and behavior of NPs in various complex environmental systems.


Subject(s)
Cyanobacteria , Microplastics , Bioaccumulation , Ecosystem , Fresh Water , Seawater , Polystyrenes
5.
Inorg Chem ; 62(38): 15711-15718, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37695723

ABSTRACT

Exploring highly efficient blue-emissive lead-free halide materials is a significant and challenging objective in the study of luminescent materials. This study reports the synthesis of a new zero-dimensional (0D) hybrid zinc halide of [CYP]ZnBr4 (CYP = 1-cyclohexylpiperazine) containing an isolated [ZnBr4]2- tetrahedron. [CYP]ZnBr4 exhibits strong blue light emission with a high photoluminescence quantum yield (PLQY) of 79.22%, surpassing all previously reported 0D zinc halide counterparts. According to the theoretical and experimental studies, the blue light emission is attributed to intrinsic self-trapped excitons resulting from strong electron-phonon coupling and structural deformation. Importantly, [CYP]ZnBr4 demonstrates excellent structural and luminescence stability toward high temperatures (180 °C) over at least half a month. High luminescence efficiency and stability enable [CYP]ZnBr4 to be an efficient blue phosphor to fabricate white light-emitting diodes (LEDs), which produces high-quality white light with a color rendering index (CRI) of 93.1 and a correlated color temperature (CCT) of 5304 K, closely resembling natural sunlight. This white LED also exhibits consistent performance and stability across different drive currents, suggesting the potential for high-power optoelectronic applications. Overall, this study paves the way for the utilization of 0D hybrid halides in advanced solid-state lighting applications.

6.
J Environ Manage ; 336: 117632, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36921474

ABSTRACT

Although the fates of microplastics (0.1-5 mm) in marine environments and freshwater are increasingly studied, little is known about their vector effect in wastewater treatment plants (WWTPs). Previous studies have evaluated the accumulation of antibiotic resistance genes (ARGs) on microplastics, but there is no direct evidence for the selection and horizontal transfer of ARGs on different microplastics in WWTPs. Here, we show biofilm formation as well as bacterial community and ARGs in these biofilms grown on four kinds of microplastics via incubation in the aerobic and anaerobic tanks of a WWTP. Microplastics showed differential capacities for bacteria and ARGs enrichment, differing from those of the culture environment. Furthermore, ARGs in microplastic biofilms were horizontally transferred at frequencies higher than those in water samples in both tanks. Therefore, microplastics in WWTPs can act as substrates for horizontal transfer of ARGs, potentially causing a great harm to the ecological environment and adversely affecting human health.


Subject(s)
Anti-Bacterial Agents , Microplastics , Humans , Anti-Bacterial Agents/pharmacology , Plastics , Genes, Bacterial , Wastewater , Drug Resistance, Microbial/genetics , Bacteria/genetics
7.
Environ Sci Technol ; 56(7): 4071-4079, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35290020

ABSTRACT

Although the biological effects of nanoplastics (<100 nm in size) in aquatic environments have been increasingly investigated, almost all such studies have been performed at observed-effect concentrations (higher than 1 µg/mL). The use of observed-effect concentrations of nanoplastics can provide essential data for evaluating the potential risks, but how these results apply to the effects of concentrations of nanoplastics observed in the environment remains unclear. Here, we show that exposure to both positively and negatively charged nanoplastics at the observed-effect concentration (ranging from 0 to 50 µg/mL) can result in physiological changes of Lemna minor L., a typical flowering aquatic plant species, inducing H2O2 and O2- accumulation and even cell death. However, the nanoplastics at environmentally relevant concentrations (lower than 0.1 µg/mL) had no obvious effects on phenotype of L. minor. Moreover, nanoplastics at both observed-effect and environmentally relevant concentrations were adsorbed onto the roots and fronds of the plants, whereas uptake by the roots and fronds occurred only at the observed-effect concentration. Although no phenotypic changes across 30 generations of cultivation were observed when the plants were exposed to 0.015 µg/mL nanoplastics, the expression of genes related to the response to stimuli and to oxidative and osmotic stress was upregulated under both observed-effect and environmentally relevant concentrations. Our findings suggest that the long-term presence of nanoplastics at environmentally relevant concentrations might induce some variations in the transcription level and have potential threat to floating microphytes and aquatic ecosystems.


Subject(s)
Araceae , Water Pollutants, Chemical , Araceae/metabolism , Ecosystem , Hydrogen Peroxide , Microplastics/toxicity , Polystyrenes , Water Pollutants, Chemical/metabolism
8.
Environ Res ; 206: 112607, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34958782

ABSTRACT

The performance of anaerobic digestion is significantly governed by the concentration of volatile fatty acids (VFAs). Though the titration and near-infrared spectroscopy have been used to measure the VFAs in the digester, there is still lack of the establishment of on-line monitoring of VFAs in practical application. An effective quantification method based on mid-infrared (MIR) spectroscopy was developed, and used to measure the concentrations of VFAs in the anaerobic bioreactor nondestructively in parallel. The wavelet denoising (WD) spectra were used as the spectral preprocessing option. Compared with other pretreatment methods, the established calibration model built by WD spectra showed satisfactory results. Further, the model was verified using high performance liquid chromatography (HPLC), and predictions were made using real reactor effluent samples. Based on this theoretical work, a set of equipment for the in-situ online monitoring of VFAs was designed, which has high feasibility and effectively solves the problems with the current VFAs online monitoring process. These results provide a new solution for on-line monitoring of the anaerobic digestion, and have great potential for practical application.


Subject(s)
Bioreactors , Fatty Acids, Volatile , Anaerobiosis , Calibration
9.
Ecotoxicol Environ Saf ; 247: 114218, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36279636

ABSTRACT

Microplastics (MPs) in natural environments undergo complex aging processes, changing their interactions with coexisting antibiotics, and posing unpredictable ecological risks. However, the joint toxicity of aged MPs (aMPs) and antibiotics to bacteria, especially at the molecular level, is unclear. In this study, non-thermal plasma technology was used to simultaneously simulate various radical oxidation and physical reactions that occur naturally in the environment, breaking the limitation of simple aging process in laboratory aging technologies. After aging, we investigated the altered properties of aMPs, their interactions with ciprofloxacin (CIP), and the molecular responses of E. coli exposed to pristine MPs (13.5 mg/L), aMPs (13.5 mg/L), and CIP (2 µg/L) individually or simultaneously. aMPs bound far more CIP to their surfaces than pristine MPs, especially in freshwater ecosystems. Notably, the growth of E. coli exposed to aMPs alone was inhibited, whereas pristine MPs exposure didn't affect the growth of E. coli. Moreover, the most differentially expressed genes in E. coli were induced by the coexposure of aMPs and CIP. Although E. coli depended on chemotaxis to improve its flagellar rotation and escaped the stress of pollutants, the coexposure of aMPs and CIP still caused cell membrane damage, oxidative stress, obstruction of DNA replication, and osmotic imbalance in E. coli. This study filled the knowledge gap between the toxicity of aMPs and pristine MPs coexisting with antibiotics at the transcription level, helping in the accurate assessment of the potential risks of MPs to the environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/toxicity , Ciprofloxacin/toxicity , Plastics , Escherichia coli/genetics , Escherichia coli/metabolism , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anti-Bacterial Agents/toxicity
10.
J Clin Pharm Ther ; 46(6): 1564-1575, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34312870

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Mycophenolate mofetil, an ester prodrug of mycophenolic acid (MPA), is widely used to prevent graft rejection after kidney transplantation. The pharmacokinetic (PK) of MPA has been extensively studied, which revealed a high degree of variability. An integrated population PK (PopPK) model of MPA and its main metabolite mycophenolic acid glucuronide (MPAG) was developed using the adult patients who underwent kidney transplant and were administered oral mycophenolate mofetil combined with tacrolimus. METHODS: In total, 917 MPA and 740 MPAG concentrations in191 adult patients were analysed via nonlinear mixed-effects modelling. The concentration-time data were adequately described using a chain compartment model, including central and peripheral compartments for MPA and a central compartment for MPAG. Stepwise forward inclusion and backward elimination procedures were used to investigate the effects of genetic polymorphisms, including in UGT1A8, UGT1A9, UGT2B7, ABCB1, ABCC2, ABCG2, SLCO1B1, SLCO1B3, and HNF1α. RESULTS AND DISCUSSION: These genetic polymorphisms in metabolic enzymes and transporters have no obvious impact on the PK of MPA in adult patients who underwent kidney transplant and were co-treated with tacrolimus. The post-transplant time, serum albumin, and creatinine clearance were identified as significant covariates affecting the PK of MPA and MPAG, which should be considered in the clinical use of mycophenolate mofetil. WHAT IS NEW AND CONCLUSION: We established a PopPK model of MPA and MPAG in Chinese adult patients who underwent kidney transplant and were co-treated with tacrolimus. Genetic polymorphisms in metabolic enzymes and transporters showed no obvious impact on MMF PK. A model-informed dosing strategy was proposed by the established model, and MMF dose adjustment should be based on ALB levels and the post-transplantation time.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Kidney Transplantation/methods , Membrane Transport Proteins/genetics , Mycophenolic Acid/pharmacokinetics , Tacrolimus/therapeutic use , Adolescent , Adult , Asian People , China , Creatinine/blood , Drug Therapy, Combination , Female , Genotype , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Mycophenolic Acid/therapeutic use , Polymorphism, Genetic , Serum Albumin/analysis , Tacrolimus/administration & dosage , Young Adult
11.
Environ Sci Technol ; 54(6): 3386-3394, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31961660

ABSTRACT

Although the fate of nanoplastics (<100 nm) in freshwater systems is increasingly well studied, much less is known about its potential threats to cyanobacterial blooms, the ultimate phenomenon of eutrophication occurrence worldwide. Previous studies have evaluated the consequences of nanoplastics increasing the membrane permeability of microbes, however, there is no direct evidence for interactions between nanoplastics and microcystin; intracellular hepatotoxins are produced by some genera of cyanobacteria. Here, we show that the amino-modified polystyrene nanoplastics (PS-NH2) promote microcystin synthesis and release from Microcystis aeruginosa, a dominant species causing cyanobacterial blooms, even without the change of coloration. We demonstrate that PS-NH2 inhibits photosystem II efficiency, reduces organic substance synthesis, and induces oxidative stress, enhancing the synthesis of microcystin. Furthermore, PS-NH2 promotes the extracellular release of microcystin from M. aeruginosa via transporter protein upregulation and impaired cell membrane integrity. Our findings propose that the presence of nanoplastics in freshwater ecosystems might enhance the threat of eutrophication to aquatic ecology and human health.


Subject(s)
Cyanobacteria , Microcystis , Ecosystem , Eutrophication , Microcystins
13.
Antonie Van Leeuwenhoek ; 111(10): 1845-1853, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29603043

ABSTRACT

A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15-35 °C (optimum, 25-30 °C) and pH 6-11 (optimum, 7.5-8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA-DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G + C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (= CCTCC AB 2016294T = KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.


Subject(s)
Aquatic Organisms/microbiology , Dinoflagellida/microbiology , Gram-Negative Aerobic Bacteria/classification , DNA, Bacterial , Gram-Negative Aerobic Bacteria/chemistry , Gram-Negative Aerobic Bacteria/genetics , Gram-Negative Aerobic Bacteria/isolation & purification , Metabolomics/methods , Molecular Typing , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics
14.
Biodegradation ; 29(1): 89-103, 2018 02.
Article in English | MEDLINE | ID: mdl-29224124

ABSTRACT

In order to evaluate the enhancement mechanisms of enhanced startup performance in biofilm systems for polluted source water pretreatment, three lab-scale reactors with elastic stereo media (ESM) were operated under different enhanced sediment and hydraulic agitation conditions. It is interesting to found the previously underestimated or overlooked effects of sediment on the enhancement of pollutants removal performance and enrichment of functional bacteria in biofilm systems. The maximum NH4+-N removal rate of 0.35 mg L-1 h-1 in sediment enhanced condition was 2.19 times of that in control reactor. Sediment contributed to 42.0-56.5% of NH4+-N removal and 15.4-41.2% of total nitrogen removal in different reactors under different operation conditions. The enhanced hydraulic agitation with sediment further improved the operation performance and accumulation of functional bacteria. Generally, Proteobacteria (48.9-52.1%), Bacteroidetes (18.9-20.8%) and Actinobacteria (15.7-18.5%) were dominant in both sediment and ESM bioiflm at  phylum level. The potentially functional bacteria found in sediment and ESM biofilm samples with some functional bacteria mainly presented in sediment samples only (e.g., Genera Bacillus and Lactococcus of Firmicutes phylum) may commonly contribute to the removal of nitrogen and organics.


Subject(s)
Biofilms , Geologic Sediments/chemistry , Water Pollution/analysis , Water Purification/methods , Bacteria/metabolism , Batch Cell Culture Techniques , Biodegradation, Environmental , Bioreactors/microbiology , Denitrification , Nitrification , Nitrogen/metabolism , Phylogeny , Principal Component Analysis , Water Pollutants/isolation & purification
15.
Biodegradation ; 28(4): 231-244, 2017 08.
Article in English | MEDLINE | ID: mdl-28455641

ABSTRACT

Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4+-N was impaired in biofilm systems when influent NH4+-N was less than 0.35 mg L-1 or NH4+-N loading rate of less than 7.51 mg L-1 day-1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.


Subject(s)
Bacteria/metabolism , Biofilms , Stress, Physiological , Water Purification/methods , Biodegradation, Environmental , Biodiversity , Biological Oxygen Demand Analysis , Phylogeny , Principal Component Analysis , Water Pollutants, Chemical/isolation & purification
16.
Biodegradation ; 28(1): 111-123, 2017 02.
Article in English | MEDLINE | ID: mdl-27913890

ABSTRACT

The initial formation of biofilm and the removal performance of pollutants in biological pretreatment process for polluted raw water were limited due to the oligotrophic niche in raw water. In this study, the feasibility of using pre-inoculation biofilm formed under nutrients enhanced condition for polluted raw water treatment was analyzed in nine batch reactors. Results showed that the pollutants removal performance of biofilm was improved under nutrients enhanced conditions. Ammonia oxidation rate (AOR) was exponentially increased with the increasing in NH4+-N levels, and organic matter removal rate (ORR) was positively related to the initial total organic carbon (TOC) concentration. The biofilm formation and microbial diversity were further improved via adding more substrates, seeding river sediment and feeding effluent from a mature biofilm reactor. However, the biofilm formed under higher substrate conditions had higher half-saturation constant values (K S) to both NH4+-N and TOC, which decreased AOR and ORR values when it was used to treat polluted raw water. The reduction percentage of AOR and ORR showed logarithmic growth modes with the increase in K S values. Fortunately, improvement of nutrients flux via accelerating influent replacement could enhance the start-up performance effectively and decrease the operation risk introduced by the changes in substrate affinity.


Subject(s)
Biofilms , Bioreactors , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biodegradation, Environmental , Biofilms/growth & development , Feasibility Studies , Risk Assessment , Rivers/chemistry
17.
Des Monomers Polym ; 20(1): 344-350, 2017.
Article in English | MEDLINE | ID: mdl-29491805

ABSTRACT

Through metal-free protocol, hypercrosslinked porous polyporphyrin with permanent porosity was obatined via the Friedel-Crafts alkylation of tetracarbazolylporphyrin using formaldehyde dimethyl acetal as an external cross-linker. Its chemical structure and porosity was well characterized and confirmed. The BET specific surface area value of HCP-TCPP is 1050 m2 g-1 and related dominant pore size is centered at 0.63 nm. The adsorption amount of methanol by HCP-TCPP is high up to 800 mg g-1 (about 25.0 mmol g-1) at its saturated vapor pressure, which is higher than that of toluene (600 mg g-1, 6.5 mmol g-1). Further study indicates that polymer HCP-TCPP, possessing the high BET specific surface area and total pore volume, exhibits good hydrogen uptake of 3.44 wt % (77 K) and high carbon dioxide uptake of 41.1 wt % (298 K) at 18.0 bar. Besides, the obtained porous polymer can also be used as an effective heterogeneous catalyst for the Knoevenagel condensation between various aldehydes and malononitrile.

18.
Small ; 10(2): 308-15, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-23913850

ABSTRACT

Facile preparation of microporous conjugated polycarbazoles via carbazole-based oxidative coupling polymerization is reported. The process to form the polymer network has cost-effective advantages such as using a cheap catalyst, mild reaction conditions, and requiring a single monomer. Because no other functional groups such as halo groups, boric acid, and alkyne are required for coupling polymerization, properties derived from monomers are likely to be fully retained and structures of final polymers are easier to characterize. A series of microporous conjugated polycarbazoles (CPOP-2-7) with permanent porosity are synthesized using versatile carbazolyl-bearing 2D and 3D conjugated core structures with non-planar rigid conformation as building units. The Brunauer-Emmett-Teller specific surface area values for these porous materials vary between 510 and 1430 m(2) g(-1) . The dominant pore sizes of the polymers based on the different building blocks are located between 0.59 and 0.66 nm. Gas (H2 and CO2 ) adsorption isotherms show that CPOP-7 exhibits the best uptake capacity for hydrogen (1.51 wt% at 1.0 bar and 77 K) and carbon dioxide (13.2 wt% at 1.0 bar and 273 K) among the obtained polymers. Furthermore, its high CH4 /N2 and CO2 /N2 adsorption selectivity gives polymer CPOP-7 potential application in gas separation.

19.
Tumour Biol ; 35(4): 3223-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24272086

ABSTRACT

In clinical practice, we found that some primary gastrointestinal mucosa-associated lymphoid tissue (MALT) lymphoma had different prognosis. This study aimed to explore the role of IGH rearrangement, p53 and ATM gene variations in the assessment of prognosis in primary gastrointestinal MALT lymphoma. In 50 cases of primary gastrointestinal MALT lymphoma (1) IGH arrangement was found in 59.5% of patients with primary gastrointestinal MALT lymphoma; IGH arrangement was found in 48.4% of patients with primary gastrointestinal MALT lymphoma at stage I-II and in 90.9% of patients at stage III-IV (χ(2) = 6.093, p < 0.05). Average survival time in patients with IGH rearrangement was 16.39 months, being shorter than that in patients with non-IGH rearrangement (38.13 months) (t = 3.239, p < 0.01). (2) p53 gene deletion was found in 31.0% of patients with primary gastrointestinal MALT lymphoma; p53 gene deletion was found in 22.6 % of patients with primary gastrointestinal MALT lymphoma at stage I-II and in 54.5% of patients at stage III-IV (χ(2) = 3.882, p < 0.05). Average survival time in patients with p53 gene deletion was 8.0 months, being shorter than that of patients with normal p53 gene (32.81 months) (t = 3.609, p < 0.01). (3) ATM gene deletion was found in 23.8% of patients with primary gastrointestinal MALT lymphoma; ATM gene deletion was found in 16.1 % of patients with primary gastrointestinal MALT lymphoma at stage I-II and in 45.5% of patients at stage III-IV (χ(2) = 3.849, p < 0.05). Average survival time in patients with ATM gene deletion was 6.10 months, which is shorter than that of patients with normal ATM gene (31.71 months) (t = 3.503, p < 0.01). (4) IGH rearrangement, p53 and ATM gene deletion were no correlation with tumor location. (5) Average survival time in primary gastrointestinal MALT lymphoma patients of non-gene or single gene change was 33.42 months, which is longer than that of patients with multiple genes change (6.67 months) (t = 4.013,p < 0.01). There was a high incidence of IGH rearrangement or p53 and ATM gene deletion in patients at stage III-IV. The average survival time was shorter in these patients. Average survival time in primary gastrointestinal MALT lymphoma patients with multiple genes abnormalities was shorter than that in non-gene or single gene change patients. IGH rearrangement, p53 and ATM gene deletion may play a synergistic role in the occurrence and development of the primary gastrointestinal MALT lymphoma. Patients with multiple genes abnormalities had poor prognosis, and they should be advised early united chemotherapy.


Subject(s)
Gastrointestinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell, Marginal Zone/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Ataxia Telangiectasia Mutated Proteins/genetics , Female , Gastrointestinal Neoplasms/microbiology , Gastrointestinal Neoplasms/pathology , Gene Deletion , Genes, p53 , Helicobacter pylori/isolation & purification , Humans , In Situ Hybridization, Fluorescence , Lymphoma, B-Cell, Marginal Zone/microbiology , Lymphoma, B-Cell, Marginal Zone/pathology , Male , Middle Aged , Neoplasm Staging
20.
Front Microbiol ; 15: 1301073, 2024.
Article in English | MEDLINE | ID: mdl-38440147

ABSTRACT

Introduction: Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods: In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results: Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions: C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.

SELECTION OF CITATIONS
SEARCH DETAIL