Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood Cells Mol Dis ; 103: 102780, 2023 11.
Article in English | MEDLINE | ID: mdl-37516005

ABSTRACT

We report here an instructive case referred at 16 months-old for exploration of hemolysis without anemia (compensated anemia with reticulocytosis). The biology tests confirmed the hemolysis with increased total and indirect bilirubin. The usual hemolysis diagnosis tests were normal (DAT, G6PD, PK, Hb electrophoresis) except cytology and ektacytometry suggesting an association of multiple red blood cell (RBC) membrane disorders. This led us to propose a molecular screening analysis using targeted-Next Generation Sequencing (t-NGS) with a capture technique on 93 genes involved in RBC and erythropoiesis defects. We identified 4 missense heterozygous allelic variations, all of them were described without any significance (VUS) in the SLC4A1, RhAG, PIEZO1 and SPTB genes. The study of the familial cosegregation and research functional tests allowed to decipher the role of at least two by two genes in the phenotype and the hemolytic disease of this young patient. Specialized t-NGS panel (or virtual exome/genome sequencing) in a disease-referent laboratory and the motivated collaboration of clinicians, biologists and scientists should be the gold standard for improving the diagnosis of the patients affected with RBC diseases or rare inherited anemias.


Subject(s)
Hematologic Diseases , Spherocytosis, Hereditary , Humans , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/genetics , Spectrin/genetics , High-Throughput Nucleotide Sequencing , Hemolysis , Mutation , Erythrocytes , Phenotype , Anion Exchange Protein 1, Erythrocyte/genetics , Ion Channels/genetics
2.
Haematologica ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37981895

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a rare, generally aggressive myeloproliferative neoplasm affecting young children. It is characterized by granulomonocytic expansion, with monocytosis infiltrating peripheral tissues. JMML is initiated by mutations upregulating RAS signaling. Approximately 10% of cases remain without an identified driver event. Exome sequencing of 2 unrelated cases of familial JMML of unknown genetics and analysis of the French JMML cohort identified 11 patients with variants in SH2B3, encoding LNK, a negative regulator of the JAK-STAT pathway. All variants were absent from healthy population databases, and mutation spectrum was consistent with a loss of function of the LNK protein. A stoploss variant was shown to affect both protein synthesis and stability. The other variants were either truncating or missense, the latter affecting the SH2 domain that interacts with activated JAK. Of the 11 patients, 8 from 5 families inherited pathogenic bi-allelic SH2B3 germline variants from their unaffected heterozygous parents. These children represent half of the cases with no identified causal mutation in the French cohort. They displayed typical clinical and hematological JMML features with neonatal onset and marked thrombocytopenia. They were characterized by absence of additional genetic alterations and a hypomethylated DNA profile with fetal characteristics. All patients showed partial or complete spontaneous clinical resolution. However, progression to thrombocythemia and immunity-related pathologies may be of concern later in life. Bi-allelic SH2B3 germline mutations thus define a new condition predisposing to a JMML-like disorder, suggesting that the JAK pathway deregulation is capable of initiating JMML, and opening new therapeutic options.

3.
Blood ; 134(3): 277-290, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31151987

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.


Subject(s)
Mutation , Peptide Elongation Factors/genetics , Peptide Initiation Factors/biosynthesis , Ribonucleoprotein, U5 Small Nuclear/genetics , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/metabolism , Adolescent , Animals , Cells, Cultured , DNA Mutational Analysis , Disease Models, Animal , Disease Susceptibility , Female , Genome-Wide Association Study , Humans , Infant , Male , Mice , Mice, Transgenic , Models, Molecular , Pedigree , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/metabolism , Phenotype , Protein Conformation , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/metabolism , Shwachman-Diamond Syndrome/diagnosis , Structure-Activity Relationship , Whole Genome Sequencing
4.
Blood ; 132(12): 1318-1331, 2018 09 20.
Article in English | MEDLINE | ID: mdl-29914977

ABSTRACT

Congenital neutropenias (CNs) are rare heterogeneous genetic disorders, with about 25% of patients without known genetic defects. Using whole-exome sequencing, we identified a heterozygous mutation in the SRP54 gene, encoding the signal recognition particle (SRP) 54 GTPase protein, in 3 sporadic cases and 1 autosomal dominant family. We subsequently sequenced the SRP54 gene in 66 probands from the French CN registry. In total, we identified 23 mutated cases (16 sporadic, 7 familial) with 7 distinct germ line SRP54 mutations including a recurrent in-frame deletion (Thr117del) in 14 cases. In nearly all patients, neutropenia was chronic and profound with promyelocytic maturation arrest, occurring within the first months of life, and required long-term granulocyte colony-stimulating factor therapy with a poor response. Neutropenia was sometimes associated with a severe neurodevelopmental delay (n = 5) and/or an exocrine pancreatic insufficiency requiring enzyme supplementation (n = 3). The SRP54 protein is a key component of the ribonucleoprotein complex that mediates the co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER). We showed that SRP54 was specifically upregulated during the in vitro granulocytic differentiation, and that SRP54 mutations or knockdown led to a drastically reduced proliferation of granulocytic cells associated with an enhanced P53-dependent apoptosis. Bone marrow examination of SRP54-mutated patients revealed a major dysgranulopoiesis and features of cellular ER stress and autophagy that were confirmed using SRP54-mutated primary cells and SRP54 knockdown cells. In conclusion, we characterized a pathological pathway, which represents the second most common cause of CN with maturation arrest in the French CN registry.


Subject(s)
Bone Marrow Diseases/genetics , Endoplasmic Reticulum Stress , Exocrine Pancreatic Insufficiency/genetics , Lipomatosis/genetics , Mutation , Neutropenia/congenital , Signal Recognition Particle/genetics , Adolescent , Adult , Apoptosis , Autophagy , Bone Marrow Diseases/metabolism , Bone Marrow Diseases/pathology , Child , Child, Preschool , Congenital Bone Marrow Failure Syndromes , Exocrine Pancreatic Insufficiency/metabolism , Exocrine Pancreatic Insufficiency/pathology , Female , Humans , Infant , Infant, Newborn , Lipomatosis/metabolism , Lipomatosis/pathology , Male , Middle Aged , Neutropenia/genetics , Neutropenia/metabolism , Neutropenia/pathology , Shwachman-Diamond Syndrome , Up-Regulation , Young Adult
10.
J Pediatr Hematol Oncol ; 40(1): 43-47, 2018 01.
Article in English | MEDLINE | ID: mdl-29189507

ABSTRACT

Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Leukemia, Myeloid, Acute/diagnosis , Prognosis , Adolescent , Age Factors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Case-Control Studies , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/mortality , Child , Child, Preschool , Cytarabine/administration & dosage , France , Humans , Infant , Leukemia, Monocytic, Acute , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myelomonocytic, Acute , Leukocyte Count , Recurrence , Survival Analysis
11.
Br J Haematol ; 179(4): 557-574, 2017 11.
Article in English | MEDLINE | ID: mdl-28875503

ABSTRACT

This review focuses on the classification, diagnosis and natural history of congenital neutropenia (CN). CN encompasses a number of genetic disorders with chronic neutropenia and, for some, affecting other organ systems, such as the pancreas, central nervous system, heart, bone and skin. To date, 24 distinct genes have been associated with CN. The number of genes involved makes gene screening difficult. This can be solved by next-generation sequencing (NGS) of targeted gene panels. One of the major complications of CN is spontaneous leukaemia, which is preceded by clonal somatic evolution, and can be screened by a targeted NGS panel focused on somatic events.


Subject(s)
Genomics/methods , Neutropenia/congenital , Cell Transformation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Leukemia/etiology , Neutropenia/classification , Neutropenia/complications , Neutropenia/diagnosis
15.
Pediatr Hematol Oncol ; 34(8): 425-427, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29303660

ABSTRACT

We report the outcome of 27 children with de novo acute megakaryoblastic leukemia (AMKL) (excluding Down syndrome) enrolled in the French multicenter prospective study ELAM02 (2005-2011). There was no difference in gender, initial leukocyte count, CNS involvement, and complete remission rate (88.9%), as compared to other acute myeloid leukemia (AML) subtypes. AMKL patients had a significantly poorer outcome (5-year overall survival 54% [CI 95% 33%-71%] than children with other AML subtypes (5-year overall survival 73% [CI 95% 68%-77%] p = 0.02). Gender, age, CNS leukemia, hyperleukocytosis, complete remission or cytogenetic subgroups were not significant prognostic factors of disease-free survival. AMKL (excluding Down syndrom) remains an AML subgroup with inferior outcome.


Subject(s)
Leukemia, Megakaryoblastic, Acute/mortality , Child , Child, Preschool , Disease-Free Survival , Down Syndrome , Female , France/epidemiology , Humans , Infant , Leukemia, Megakaryoblastic, Acute/blood , Leukemia, Megakaryoblastic, Acute/therapy , Male , Prospective Studies , Survival Rate
16.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24705357

ABSTRACT

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Subject(s)
Carcinogenesis/genetics , Mutation/physiology , Phenotype , ras Proteins/genetics , Animals , Caenorhabditis elegans , Cohort Studies , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myelomonocytic, Juvenile/genetics , MAP Kinase Kinase Kinases/metabolism , Noonan Syndrome/genetics , Oncogene Protein v-akt/metabolism , Signal Transduction/genetics , ras Proteins/chemistry , ras Proteins/metabolism
17.
Blood Cells Mol Dis ; 56(1): 9-22, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26603718

ABSTRACT

Inherited red blood cell (RBC) membrane disorders, such as hereditary spherocytosis, elliptocytosis and hereditary ovalocytosis, result from mutations in genes encoding various RBC membrane and skeletal proteins. The RBC membrane, a composite structure composed of a lipid bilayer linked to a spectrin/actin-based membrane skeleton, confers upon the RBC unique features of deformability and mechanical stability. The disease severity is primarily dependent on the extent of membrane surface area loss. RBC membrane disorders can be readily diagnosed by various laboratory approaches that include RBC cytology, flow cytometry, ektacytometry, electrophoresis of RBC membrane proteins and genetics. The reference technique for diagnosis of RBC membrane disorders is the osmotic gradient ektacytometry. However, in spite of its recognition as the reference technique, this technique is rarely used as a routine diagnosis tool for RBC membrane disorders due to its limited availability. This may soon change as a new generation of ektacytometer has been recently engineered. In this review, we describe the workflow of the samples shipped to our Hematology laboratory for RBC membrane disorder analysis and the data obtained for a large cohort of French patients presenting with RBC membrane disorders using a newly available version of the ektacytomer.


Subject(s)
Erythrocyte Deformability , Erythrocyte Membrane/pathology , Hematologic Tests/instrumentation , Spherocytosis, Hereditary/diagnosis , Adolescent , Child , Child, Preschool , Equipment Design , Erythrocyte Indices , Female , Humans , Infant , Male , Spherocytosis, Hereditary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL