Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 141(25): 3039-3054, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37084386

ABSTRACT

Red blood cell disorders can result in severe anemia. One such disease congenital dyserythropoietic anemia IV (CDA IV) is caused by the heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by the paucity of suitable and adequate quantities of material from patients with anemia and the rarity of the disease. We, therefore, took a novel approach, creating a human cellular disease model system for CDA IV that accurately recapitulates the disease phenotype. Next, using comparative proteomics, we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include downregulated pathways the governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking, and global transcription, and upregulated networks governing mitochondrial biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying the effects of a rare mutation can reveal fundamental biology.


Subject(s)
Anemia, Dyserythropoietic, Congenital , Humans , Anemia, Dyserythropoietic, Congenital/genetics , Mutation , Gene Expression Regulation , Phenotype , Transcription Factors/genetics
2.
Am J Physiol Endocrinol Metab ; 326(4): E515-E527, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38353639

ABSTRACT

Exercise robustly increases the glucose demands of skeletal muscle. This demand is met by not only muscle glycogenolysis but also accelerated liver glucose production from hepatic glycogenolysis and gluconeogenesis to fuel mechanical work and prevent hypoglycemia during exercise. Hepatic gluconeogenesis during exercise is dependent on highly coordinated responses within and between muscle and liver. Specifically, exercise increases the rate at which gluconeogenic precursors such as pyruvate/lactate or amino acids are delivered from muscle to the liver, extracted by the liver, and channeled into glucose. Herein, we examined the effects of interrupting hepatic gluconeogenic efficiency and capacity on exercise performance by deleting mitochondrial pyruvate carrier 2 (MPC2) and/or alanine transaminase 2 (ALT2) in the liver of mice. We found that deletion of MPC2 or ALT2 alone did not significantly affect time to exhaustion or postexercise glucose concentrations in treadmill exercise tests, but mice lacking both MPC2 and ALT2 in hepatocytes (double knockout, DKO) reached exhaustion faster and exhibited lower circulating glucose during and after exercise. Use of 2H/1³C metabolic flux analyses demonstrated that DKO mice exhibited lower endogenous glucose production owing to decreased glycogenolysis and gluconeogenesis at rest and during exercise. Decreased gluconeogenesis was accompanied by lower anaplerotic, cataplerotic, and TCA cycle fluxes. Collectively, these findings demonstrate that the transition of the liver to the gluconeogenic mode is critical for preventing hypoglycemia and sustaining performance during exercise. The results also illustrate the need for interorgan cross talk during exercise as described by the Cahill and Cori cycles.NEW & NOTEWORTHY Martino and colleagues examined the effects of inhibiting hepatic gluconeogenesis on exercise performance and systemic metabolism during treadmill exercise in mice. Combined inhibition of gluconeogenesis from lactate/pyruvate and alanine impaired exercise endurance and led to hypoglycemia during and after exercise. In contrast, suppressing either pyruvate-mediated or alanine-mediated gluconeogenesis alone had no effect on these parameters. These findings provide new insight into the molecular nodes that coordinate the metabolic responses of muscle and liver during exercise.


Subject(s)
Gluconeogenesis , Hypoglycemia , Mice , Animals , Gluconeogenesis/genetics , Pyruvic Acid/metabolism , Exercise Tolerance , Liver/metabolism , Glucose/metabolism , Hypoglycemia/metabolism , Lactates/metabolism , Alanine/metabolism , Amino Acids/metabolism
3.
Biochem Biophys Res Commun ; 702: 149655, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340654

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. MTARC1, encoded by the MTARC1 gene, is a mitochondrial outer membrane-anchored enzyme. Interestingly, the MTARC1 p.A165T (rs2642438) variant is associated with a decreased risk of NAFLD, indicating that MTARC1 might be an effective target. It has been reported that the rs2642438 variant does not have altered enzymatic activity so we reasoned that this variation may affect MTARC1 stability. In this study, MTARC1 mutants were generated and stability was assessed using a protein stability reporter system both in vitro and in vivo. We found that the MTARC1 p.A165T variant has dramatically reduced the stability of MTARC1, as assessed in several cell lines. In mice, the MTARC1 A168T mutant, the equivalent of human MTARC1 A165T, had diminished stability in mouse liver. Additionally, several MTARC1 A165 mutants, including A165S, A165 N, A165V, A165G, and A165D, had dramatically decreased stability as well, suggesting that the alanine residue of MTARC1 165 site is essential for MTARC1 protein stability. Collectively, our data indicates that the MTARC1 p.A165T variant (rs2642438) leads to reduced stability of MTARC1. Given that carriers of rs2642438 show a decreased risk of NAFLD, the findings herein support the notion that MTARC1 inhibition may be a therapeutic target to combat NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Protein Stability
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443201

ABSTRACT

Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.


Subject(s)
Adipose Tissue/metabolism , Lipodystrophy/metabolism , Osteoarthritis, Knee/metabolism , Adipose Tissue/physiopathology , Adipose Tissue/transplantation , Adiposity , Animals , Body Weight , Cartilage/pathology , Cytokines/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Susceptibility/complications , Disease Susceptibility/metabolism , Female , Fibroblasts/metabolism , Hyperplasia/complications , Inflammation/metabolism , Lipodystrophy/diagnostic imaging , Lipodystrophy/genetics , Lipodystrophy/physiopathology , Locomotion , Male , Mice , Muscle Strength , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/prevention & control , Pain/complications , Paracrine Communication/physiology
5.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34548400

ABSTRACT

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Subject(s)
Boron Compounds/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/pharmacology , Administration, Oral , Animals , Boron Compounds/administration & dosage , Boron Compounds/chemistry , Catalytic Domain , Humans , Malaria, Falciparum/enzymology , Malaria, Falciparum/parasitology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Plasmodium falciparum/enzymology , Proteasome Inhibitors/administration & dosage , Proteasome Inhibitors/chemistry
6.
J Biol Chem ; 298(2): 101554, 2022 02.
Article in English | MEDLINE | ID: mdl-34973337

ABSTRACT

The mitochondrial pyruvate carrier (MPC) is an inner mitochondrial membrane complex that plays a critical role in intermediary metabolism. Inhibition of the MPC, especially in liver, may have efficacy for treating type 2 diabetes mellitus. Herein, we examined the antidiabetic effects of zaprinast and 7ACC2, small molecules which have been reported to act as MPC inhibitors. Both compounds activated a bioluminescence resonance energy transfer-based MPC reporter assay (reporter sensitive to pyruvate) and potently inhibited pyruvate-mediated respiration in isolated mitochondria. Furthermore, zaprinast and 7ACC2 acutely improved glucose tolerance in diet-induced obese mice in vivo. Although some findings were suggestive of improved insulin sensitivity, hyperinsulinemic-euglycemic clamp studies did not detect enhanced insulin action in response to 7ACC2 treatment. Rather, our data suggest acute glucose-lowering effects of MPC inhibition may be due to suppressed hepatic gluconeogenesis. Finally, we used reporter sensitive to pyruvate to screen a chemical library of drugs and identified 35 potentially novel MPC modulators. Using available evidence, we generated a pharmacophore model to prioritize which hits to pursue. Our analysis revealed carsalam and six quinolone antibiotics, as well as 7ACC1, share a common pharmacophore with 7ACC2. We validated that these compounds are novel inhibitors of the MPC and suppress hepatocyte glucose production and demonstrated that one quinolone (nalidixic acid) improved glucose tolerance in obese mice. In conclusion, these data demonstrate the feasibility of therapeutic targeting of the MPC for treating diabetes and provide scaffolds that can be used to develop potent and novel classes of MPC inhibitors.


Subject(s)
Anion Transport Proteins , Mitochondrial Membrane Transport Proteins , Monocarboxylic Acid Transporters , Obesity , Quinolones , Animals , Anion Transport Proteins/antagonists & inhibitors , Anion Transport Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet , Glucose/metabolism , Mice , Mice, Obese , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Obesity/drug therapy , Obesity/metabolism , Pyruvic Acid/metabolism , Quinolones/pharmacology
7.
Biochem Biophys Res Commun ; 677: 63-69, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37549603

ABSTRACT

The mammalian cell cycle is divided into four sequential phases, namely G1 (Gap 1), S (synthesis), G2 (Gap 2), and M (mitosis). Wee1, whose turnover is tightly and finely regulated, is a well-known kinase serving as a gatekeeper for the G2/M transition. However, the mechanism underlying the turnover of Wee1 is not fully understood. Autophagy, a highly conserved cellular process, maintains cellular homeostasis by eliminating intracellular aggregations, damaged organelles, and individual proteins. In the present study, we found autophagy deficiency in mouse liver caused G2/M arrest in two mouse models, namely Fip200 and Atg7 liver-specific knockout mice. To uncover the link between autophagy deficiency and G2/M transition, we combined transcriptomic and proteomic analysis for liver samples from control and Atg7 liver-specific knockout mice. The data suggest that the inhibition of autophagy increases the protein level of Wee1 without any alteration of its mRNA abundance. Serum starvation, an autophagy stimulus, downregulates the protein level of Wee1 in vitro. In addition, the half-life of Wee1 is extended by the addition of chloroquine, an autophagy inhibitor. LC3, a central autophagic protein functioning in autophagy substrate selection and autophagosome biogenesis, interacts with Wee1 as assessed by co-immunoprecipitation assay. Furthermore, overexpression of Wee1 leads to G2/M arrest both in vitro and in vivo. Collectively, our data indicate that autophagy could degrade Wee1-a gatekeeper of the G2/M transition, whereas the inhibition of autophagy leads to the accumulation of Wee1 and causes G2/M arrest in mouse liver.


Subject(s)
Apoptosis , Proteomics , Mice , Animals , Protein-Tyrosine Kinases/metabolism , Nuclear Proteins/metabolism , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , Mitosis , Autophagy , Mice, Knockout , Mammals/metabolism
8.
Environ Manage ; 69(2): 227-243, 2022 02.
Article in English | MEDLINE | ID: mdl-34999911

ABSTRACT

Despite the rapid and accelerating rate of global environmental changes, too often research that has the potential to inform more sustainable futures remains disconnected from the context in which it could be used. Though transdisciplinary approaches (TDA) are known to overcome this disconnect, institutional barriers frequently prevent their deployment. Here we use insights from a qualitative comparative analysis of five case studies to develop a process for helping researchers and funders conceptualize and implement socially engaged research within existing institutional structures. The process we propose is meant to help researchers achieve societal as well as scientific outcomes relatively early in a project, as an end in itself or en route to greater engagement later. If projects that have a strong foundation of dialog and shared power wish to use TDA within current institutional and academic structures, we suggest that they focus on three process-based factors to increase their chances for success: (1) the maturity of relationships within a collaboration, (2) the level of context knowledge present within the collaborative team, and (3) the intensity of the engagement efforts within the project.


Subject(s)
Knowledge , Research Personnel , Humans
9.
Liver Transpl ; 27(1): 116-133, 2021 01.
Article in English | MEDLINE | ID: mdl-32916011

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.


Subject(s)
Liver Transplantation , Reperfusion Injury , Acyltransferases , Animals , Humans , Liver , Mice , Mice, Inbred C57BL
10.
Haematologica ; 106(11): 2859-2873, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33054117

ABSTRACT

Human ZNF648 is a novel poly C-terminal C2H2 zinc finger protein identified amongst the most dysregulated proteins in erythroid cells differentiated from iPSC. Its nuclear localisation and structure indicate it is likely a DNA-binding protein. Using a combination of ZNF648 overexpression in an iPSC line and primary adult erythroid cells, ZNF648 knockdown in primary adult erythroid cells and megakaryocytes, comparative proteomics and transcriptomics we show that ZNF648 is required for both erythroid and megakaryocyte differentiation. Orthologues of ZNF648 were detected across Mammals, Reptilia, Actinopterygii, in some Aves, Amphibia and Coelacanthiformes suggesting the gene originated in the common ancestor of Osteichthyes (Euteleostomi or bony fish). Conservation of the C-terminal zinc finger domain is higher, with some variation in zinc finger number but a core of at least six zinc fingers conserved across all groups, with the N-terminus recognisably similar within but not between major lineages. This suggests the N-terminus of ZNF648 evolves faster than the C-terminus, however this is not due to exon-shuffling as the entire coding region of ZNF648 is within a single exon. As for other such transcription factors, the N-terminus likely carries out regulatory functions, but showed no sequence similarity to any known domains. The greater functional constraint on the zinc finger domain suggests ZNF648 binds at least some similar regions of DNA in the different organisms. However, divergence of the N-terminal region may enable differential expression, allowing adaptation of function in the different organisms.


Subject(s)
Erythrocytes/cytology , Megakaryocytes/cytology , Transcription Factors , Zinc Fingers , Animals , Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , Humans
11.
Environ Manage ; 68(4): 453-467, 2021 10.
Article in English | MEDLINE | ID: mdl-34324013

ABSTRACT

Natural resource researchers have long recognized the value of working closely with the managers and communities who depend on, steward, and impact ecosystems. These partnerships take various forms, including co-production and transdisciplinary research approaches, which integrate multiple knowledges in the design and implementation of research objectives, questions, methods, and desired outputs or outcomes. These collaborations raise important methodological and ethical challenges, because partnering with non-scientists can have real-world risks for people and ecosystems. The social sciences and biomedical research studies offer a suite of conceptual tools that enhance the quality, ethical outcomes, and effectiveness of research partnerships. For example, the ethical guidelines and regulations for human subjects research, following the Belmont Principles, help prevent harm and promote respectful treatment of research participants. However, science-management partnerships require an expanded set of ethical concepts to better capture the challenges of working with individuals, communities, organizations, and their associated ecosystems, as partners, rather than research subjects. We draw from our experiences in collaborative teams, and build upon the existing work of natural resources, environmental health, conservation and ecology, social science, and humanities scholars, to develop an expanded framework for ethical research partnership. This includes four principles: (1) appropriate representation, (2) self-determination, (3) reciprocity, and (4) deference, and two cross-cutting themes: (1) applications to humans and non-human actors, and (2) acquiring appropriate research skills. This framework is meant to stimulate important conversations about expanding ethics training and skills for researchers in all career-stages to improve partnerships and transdisciplinary natural resources research.


Subject(s)
Ecology , Ecosystem , Communication , Humans , Natural Resources , Research Personnel
14.
Arterioscler Thromb Vasc Biol ; 38(1): 218-231, 2018 01.
Article in English | MEDLINE | ID: mdl-29074585

ABSTRACT

OBJECTIVE: Human genetic variants near the FADS (fatty acid desaturase) gene cluster (FADS1-2-3) are strongly associated with cardiometabolic traits including dyslipidemia, fatty liver, type 2 diabetes mellitus, and coronary artery disease. However, mechanisms underlying these genetic associations are unclear. APPROACH AND RESULTS: Here, we specifically investigated the physiological role of the Δ-5 desaturase FADS1 in regulating diet-induced cardiometabolic phenotypes by treating hyperlipidemic LDLR (low-density lipoprotein receptor)-null mice with antisense oligonucleotides targeting the selective knockdown of Fads1. Fads1 knockdown resulted in striking reorganization of both ω-6 and ω-3 polyunsaturated fatty acid levels and their associated proinflammatory and proresolving lipid mediators in a highly diet-specific manner. Loss of Fads1 activity promoted hepatic inflammation and atherosclerosis, yet was associated with suppression of hepatic lipogenesis. Fads1 knockdown in isolated macrophages promoted classic M1 activation, whereas suppressing alternative M2 activation programs, and also altered systemic and tissue inflammatory responses in vivo. Finally, the ability of Fads1 to reciprocally regulate lipogenesis and inflammation may rely in part on its role as an effector of liver X receptor signaling. CONCLUSIONS: These results position Fads1 as an underappreciated regulator of inflammation initiation and resolution, and suggest that endogenously synthesized arachidonic acid and eicosapentaenoic acid are key determinates of inflammatory disease progression and liver X receptor signaling.


Subject(s)
Aorta/enzymology , Aortic Diseases/enzymology , Atherosclerosis/enzymology , Dyslipidemias/enzymology , Fatty Acid Desaturases/metabolism , Inflammation Mediators/metabolism , Inflammation/enzymology , Lipogenesis , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/pathology , Arachidonic Acid/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Delta-5 Fatty Acid Desaturase , Disease Models, Animal , Dyslipidemias/genetics , Dyslipidemias/pathology , Eicosapentaenoic Acid/metabolism , Fatty Acid Desaturases/genetics , Inflammation/genetics , Inflammation/pathology , Liver/metabolism , Liver X Receptors/metabolism , Macrophage Activation , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/pathology , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Plaque, Atherosclerotic , Receptors, LDL/deficiency , Receptors, LDL/genetics
15.
Pharm Res ; 35(1): 15, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29302759

ABSTRACT

PURPOSE: FCGRT encodes the alpha-chain component of the neonatal Fc receptor (FcRn). FcRn is critical for the trafficking of endogenous and exogenous IgG molecules and albumin in various tissues. Few regulators of FcRn expression have been identified. We investigated the epigenetic regulation of FcRn by two microRNAs (hsa-miR-3181 and hsa-miR-3136-3p) acting on FCGRT. METHODS: The binding of candidate microRNAs to the 3'-untranslated region of FCGRT was evaluated using luciferase reporter constructs in CHO cells. The effect of microRNAs on FCGRT mRNA and FcRn protein expression was evaluated using specific microRNA mimics and inhibitor transfections in A549, HEK293 and HepG2 cells. RESULTS: Hsa-miR-3181 mimic reduced luciferase reporter activity by 70.1% (10 nM, P < 0.0001). In A549, HEK293 and HepG2 cells, hsa-miR-3181 decreased FCGRT mRNA expression (48.6%, 51.3% and 43.5% respectively, 25 nM, P < 0.05). The hsa-miR-3181 mimic decreased the expression of FcRn protein by 40% after 48 h (25 nM, P < 0.001). The mature form of hsa-miR-3181 was detected in samples of human liver. CONCLUSIONS: These data suggest that hsa-miR-3181 is an epigenetic regulator of FCGRT expression. The identification of this regulator of FCGRT may provide insights into a potential determinant of interindividual variability in FcRn expression.


Subject(s)
Histocompatibility Antigens Class I/biosynthesis , MicroRNAs/genetics , Receptors, Fc/biosynthesis , 3' Untranslated Regions , A549 Cells , Animals , CHO Cells , Cricetinae , Cricetulus , Epigenesis, Genetic , Gene Expression , HEK293 Cells , Hep G2 Cells , Histocompatibility Antigens Class I/genetics , Humans , Liver/metabolism , Luciferases , RNA, Messenger/genetics , Receptors, Fc/genetics , Transfection/methods
16.
Wear ; 394-395: 195-202, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-30220743

ABSTRACT

The visualization of wear depth in hip prostheses can assist the evaluation of new bearing materials and implant designs. The goal of this study was to develop an accurate, fast, and economical methodology to generate colorimetric maps of wear depth in hip implants using a structured light 3D optical scanning system. The accuracy and precision of this novel technique were determined using reference blocks with known wear depths. This technique was then used to measure the in vitro wear of a hip resurfacing device for canines that incorporates a highly cross-linked polyethylene liner. The 3D optical scanner had an average accuracy of 2.1 µm and an average precision of 1.4 µm, which corresponded to errors less than 10% when measuring wear depths of 20 µm or greater. The scanner was able to repeatedly generate 3D colorimetric maps of wear depth in highly cross-linked polyethylene liners in 20 min or less. These colorimetric maps identified localized regions with 3-fold greater wear than the average wear depth, and revealed liners with asymmetric wear patterns. For the first time, this study has validated the use of 3D optical scanning to quantify in vitro surface wear in a hip replacement device.

17.
J Lipid Res ; 58(2): 420-432, 2017 02.
Article in English | MEDLINE | ID: mdl-27941027

ABSTRACT

Hepatitis C virus (HCV) is an enveloped RNA virus responsible for 170 million cases of viral hepatitis worldwide. Over 50% of chronically infected HCV patients develop hepatic steatosis, and steatosis can be induced by expression of HCV core protein (core) alone. Additionally, core must associate with cytoplasmic lipid droplets (LDs) for steatosis development and viral particle assembly. Due to the importance of the LD as a key component of hepatic lipid storage and as a platform for HCV particle assembly, it seems this dynamic subcellular organelle is a gatekeeper in the pathogenesis of viral hepatitis. Here, we hypothesized that core requires the host LD scaffold protein, perilipin (PLIN)3, to induce hepatic steatosis. To test our hypothesis in vivo, we have studied core-induced hepatic steatosis in the absence or presence of antisense oligonucleotide-mediated knockdown of PLIN3. PLIN3 knockdown blunted HCV core-induced steatosis in transgenic mice fed either chow or a moderate fat diet. Collectively, our studies demonstrate that the LD scaffold protein, PLIN3, is essential for HCV core-induced hepatic steatosis and provide new insights into the pathogenesis of HCV.


Subject(s)
Fatty Liver/genetics , Hepatitis C/metabolism , Liver/metabolism , Perilipin-3/genetics , Animals , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Knockdown Techniques , Genotype , Hepacivirus , Hepatitis C/genetics , Hepatitis C/pathology , Hepatitis C/virology , Humans , Lipid Droplets/metabolism , Lipid Droplets/pathology , Lipid Droplets/virology , Lipid Metabolism/genetics , Liver/pathology , Liver/virology , Mice , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Perilipin-3/antagonists & inhibitors
19.
Drug Metab Dispos ; 43(7): 922-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25918240

ABSTRACT

The anthracyclines doxorubicin and daunorubicin are used in the treatment of various human and canine cancers, but anthracycline-related cardiotoxicity limits their clinical utility. The formation of anthracycline C-13 alcohol metabolites (e.g., doxorubicinol and daunorubicinol) contributes to the development of anthracycline-related cardiotoxicity. The enzymes responsible for the synthesis of anthracycline C-13 alcohol metabolites in canines remain to be elucidated. We hypothesized that canine carbonyl reductase 1 (cbr1), the homolog of the prominent anthracycline reductase human CBR1, would have anthracycline reductase activity. Recombinant canine cbr1 (molecular weight: 32.8 kDa) was purified from Escherichia coli. The enzyme kinetics of "wild-type" canine cbr1 (cbr1 D218) and a variant isoform (cbr1 V218) were characterized with the substrates daunorubicin and menadione, as well as the flavonoid inhibitor rutin. Canine cbr1 catalyzes the reduction of daunorubicin to daunorubicinol, with cbr1 D218 and cbr1 V218 displaying different kinetic parameters (cbr1 D218 Km: 188 ± 144 µM versus cbr1 V218 Km: 527 ± 136 µM, P < 0.05, and cbr1 D218 Vmax: 6446 ± 3615 nmol/min per milligram versus cbr1 V218 Vmax: 15539 ± 2623 nmol/min per milligram, P < 0.01). Canine cbr1 also metabolized menadione (cbr1 D218 Km: 104 ± 50 µM, Vmax: 2034 ± 307 nmol/min per milligram). Rutin acted as a competitive inhibitor for the reduction of daunorubicin (cbr1 D218 Ki: 1.84 ± 1.02 µM, cbr1 V218 Ki: 1.38 ± 0.47 µM). These studies show that canine cbr1 metabolizes daunorubicin and provide the necessary foundation to characterize the role of cbr1 in the variable pharmacodynamics of anthracyclines in canine cancer patients.


Subject(s)
Alcohol Oxidoreductases/metabolism , Anthracyclines/metabolism , Antibiotics, Antineoplastic/metabolism , Alcohol Oxidoreductases/antagonists & inhibitors , Animals , Anti-Bacterial Agents/metabolism , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , Daunorubicin/metabolism , Dogs , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Humans , Isoenzymes/metabolism , Kinetics , Male , Oxidation-Reduction , Polymorphism, Single Nucleotide , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rutin/metabolism , Rutin/pharmacology , Vitamin K 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL