Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33275901

ABSTRACT

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Subject(s)
Protein Kinases/metabolism , Proteolysis , Proteome/metabolism , Adult , Cell Line , Databases, Protein , Female , Humans , Male , Middle Aged , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism , Young Adult
2.
Chembiochem ; 25(10): e202400073, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38457625

ABSTRACT

Identifying the drug-target interactome of small molecule therapeutics is essential for understanding the full pharmacological effects of a compound. These therapies often induce changes within the cellular proteome, leading to unexpected consequences such as changes in the targets complexation state or off-target interactions between the compound and additional proteins. Currently, unbiased target-ID approaches are being used to embark on this task. Here we provide an overview of the strengths and limitations of these methods, and a practical step-by-step protocol for using the BioTAC system to assist with drug target and interactome ID.


Subject(s)
Proteins , Ligands , Proteins/chemistry , Proteins/metabolism , Humans , Protein Binding
3.
Nat Chem Biol ; 16(6): 635-643, 2020 06.
Article in English | MEDLINE | ID: mdl-32251410

ABSTRACT

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to develop a selective, in vivo-compatible chemical probe of the DCLK1 kinase domain, DCLK1-IN-1. We demonstrate activity of DCLK1-IN-1 against clinically relevant patient-derived PDAC organoid models and use a combination of RNA-sequencing, proteomics and phosphoproteomics analysis to reveal that DCLK1 inhibition modulates proteins and pathways associated with cell motility in this context. DCLK1-IN-1 will serve as a versatile tool to investigate DCLK1 biology and establish its role in cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Movement , Doublecortin Protein , Doublecortin-Like Kinases , Drug Screening Assays, Antitumor , Gene Expression Regulation , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacokinetics , Proteomics , Rats , Structure-Activity Relationship , Zebrafish , Pancreatic Neoplasms
4.
Proteomics ; 21(13-14): e2000098, 2021 07.
Article in English | MEDLINE | ID: mdl-33991177

ABSTRACT

Doublecortin-like kinase 1 (DCLK1) is a putative cancer stem cell marker, a promising diagnostic and prognostic maker for malignant tumors and a proposed driver gene for gastric cancer (GC). DCLK1 overexpression in a majority of solid cancers correlates with lymph node metastases, advanced disease and overall poor-prognosis. In cancer cells, DCLK1 expression has been shown to promote epithelial-to-mesenchymal transition (EMT), driving disruption of cell-cell adhesion, cell migration and invasion. Here, we report that DCLK1 influences small extracellular vesicle (sEV/exosome) biogenesis in a kinase-dependent manner. sEVs isolated from DCLK1 overexpressing human GC cell line MKN1 (MKN1OE -sEVs), promote the migration of parental (non-transfected) MKN1 cells (MKN1PAR ). Quantitative proteome analysis of MKN1OE -sEVs revealed enrichment in migratory and adhesion regulators (STRAP, CORO1B, BCAM, COL3A, CCN1) in comparison to MKN1PAR -sEVs. Moreover, using DCLK1-IN-1, a specific small molecule inhibitor of DCLK1, we reversed the increase in sEV size and concentration in contrast to other EV subtypes, as well as kinase-dependent cargo selection of proteins involved in EV biogenesis (KTN1, CHMP1A, MYO1G) and migration and adhesion processes (STRAP, CCN1). Our findings highlight a specific role of DCLK1-kinase dependent cargo selection for sEVs and shed new light on its role as a regulator of signaling in gastric tumorigenesis.


Subject(s)
Extracellular Vesicles , Stomach Neoplasms , Cell Line, Tumor , Doublecortin-Like Kinases , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins , Neoplastic Stem Cells , Phenotype , Protein Serine-Threonine Kinases/genetics , Stomach Neoplasms/genetics , Vesicular Transport Proteins
5.
Nat Chem Biol ; 18(9): 917-918, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35590002
6.
Bioorg Med Chem Lett ; 29(15): 1985-1993, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31175010

ABSTRACT

The TAIRE family of kinases are an understudied branch of the CDK kinase family, that have been implicated in a number of cancers. This manuscript describes the design, synthesis and SAR of covalent CDK14 inhibitors, culminating in identification of FMF-04-159-2, a potent, covalent CDK14 inhibitor with a TAIRE kinase biased selectivity profile.


Subject(s)
Cyclin-Dependent Kinases/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/chemistry , Cyclin-Dependent Kinases/pharmacology , Humans , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 27(18): 4405-4408, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28818446

ABSTRACT

Aurora kinases play an essential role in mitosis and cell cycle regulation. In recent years Aurora kinases have proved popular cancer targets and many inhibitors have been developed. The majority of these clinical candidates are multi-targeted, rendering them inappropriate as tools for studying Aurora kinase mediated signaling. Here we report discovery of a highly selective inhibitor of Aurora kinases A, B and C, with potent cellular activity and minimal off-target activity (PLK4). The X-ray co-crystal structure of Aurora A in complex with compound 2 is reported, and provides insights into the structural determinants of ligand binding and selectivity.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
9.
Biochemistry ; 53(42): 6706-16, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25266743

ABSTRACT

Bromodomains are epigenetic reader domains, which have come under increasing scrutiny both from academic and pharmaceutical research groups. Effective targeting of the BAZ2B bromodomain by small molecule inhibitors has been recently reported, but no structural information is yet available on the interaction with its natural binding partner, acetylated histone H3K14ac. We have assigned the BAZ2B bromodomain and studied its interaction with H3K14ac acetylated peptides by NMR spectroscopy using both chemical shift perturbation (CSP) data and clean chemical exchange (CLEANEX-PM) NMR experiments. The latter was used to characterize water molecules known to play an important role in mediating interactions. Besides the anticipated Kac binding site, we consistently found the bromodomain BC loop as hotspots for the interaction. This information was used to create a data-driven model for the complex using HADDOCK. Our findings provide both structure and dynamics characterization that will be useful in the quest for potent and selective inhibitors to probe the function of the BAZ2B bromodomain.


Subject(s)
Histones/chemistry , Molecular Docking Simulation , Nuclear Proteins/chemistry , Peptides/chemistry , Acetylation , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary , Solutions
10.
Cancer Discov ; 14(7): 1143-1144, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946324

ABSTRACT

In this issue, Ryan and colleagues describe the preclinical development of a pan-RAF:MEK molecular glue with superior efficacy, brain penetrance, and tolerability in xenograft models of Ras/Raf/MAPK pathway-driven tumors. See related article by Ryan et al., p. 1190 (1).


Subject(s)
Protein Kinase Inhibitors , Humans , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , raf Kinases/metabolism , raf Kinases/genetics , Mice , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/genetics , Neoplasms/metabolism
11.
Cell Chem Biol ; 31(6): 1036-1038, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906107

ABSTRACT

In this Voices piece, the Cell Chemical Biology editors ask researchers from a range of backgrounds: what are some exciting discoveries in the induced proximity field and the next frontier for therapeutic development?


Subject(s)
Drug Discovery , Humans
12.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826238

ABSTRACT

Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras. Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition of complex I is poorly tolerated in patients due to on-target induction of peripheral neuropathy. In this work, we develop molecular glue degraders against ZBTB11, a C2H2 zinc finger transcription factor that regulates the nuclear transcription of components of the mitoribosome and electron transport chain. Our ZBTB11 degraders leverage the differences in demand for biogenesis of mitochondrial components between human neurons and rapidly-dividing pancreatic cancer cells, to selectively target the K-Ras inhibitor resistant state in PDAC. Combination treatment of both K-Ras inhibitor-resistant cell lines and multidrug resistant patient-derived organoids resulted in superior anti-cancer activity compared to single agent treatment, while sparing hiPSC-derived neurons. Proteomic and stable isotope tracing studies revealed mitoribosome depletion and impairment of the TCA cycle as key events that mediate this response. Together, this work validates ZBTB11 as a vulnerability in K-Ras inhibitor-resistant PDAC and provides a suite of molecular glue degrader tool compounds to investigate its function.

13.
Cell Chem Biol ; 30(4): 340-342, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37084716

ABSTRACT

Targeted protein degradation using molecular glues is a powerful method for targeting traditionally undruggable proteins. One challenge in molecular glue discovery is the absence of rational discovery methods. Here, King et al. leverage covalent library screening with chemoproteomics platforms to rapidly discover a molecular glue targeting NFKB1 via UBE2D recruitment.


Subject(s)
Drug Discovery , NF-kappa B p50 Subunit , Proteolysis , Drug Discovery/methods , NF-kappa B p50 Subunit/chemistry , NF-kappa B p50 Subunit/metabolism , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/metabolism
14.
Nat Commun ; 14(1): 8016, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049406

ABSTRACT

Understanding how small molecules bind to specific protein complexes in living cells is critical to understanding their mechanism-of-action. Unbiased chemical biology strategies for direct readout of protein interactome remodelling by small molecules would provide advantages over target-focused approaches, including the ability to detect previously unknown ligand targets and complexes. However, there are few current methods for unbiased profiling of small molecule interactomes. To address this, we envisioned a technology that would combine the sensitivity and live-cell compatibility of proximity labelling coupled to mass spectrometry, with the specificity and unbiased nature of chemoproteomics. In this manuscript, we describe the BioTAC system, a small-molecule guided proximity labelling platform that can rapidly identify both direct and complexed small molecule binding proteins. We benchmark the system against µMap, photoaffinity labelling, affinity purification coupled to mass spectrometry and proximity labelling coupled to mass spectrometry datasets. We also apply the BioTAC system to provide interactome maps of Trametinib and analogues. The BioTAC system overcomes a limitation of current approaches and supports identification of both inhibitor bound and molecular glue bound complexes.


Subject(s)
Biotin , Proteins , Proteins/metabolism , Chromatography, Affinity , Mass Spectrometry/methods , Photoaffinity Labels/chemistry
15.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662262

ABSTRACT

Unbiased chemical biology strategies for direct readout of protein interactome remodelling by small molecules provide advantages over target-focused approaches, including the ability to detect previously unknown targets, and the inclusion of chemical off-compete controls leading to high-confidence identifications. We describe the BioTAC system, a small-molecule guided proximity labelling platform, to rapidly identify both direct and complexed small molecule binding proteins. The BioTAC system overcomes a limitation of current approaches, and supports identification of both inhibitor bound and molecular glue bound complexes.

16.
Curr Protoc ; 2(12): e611, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36469581

ABSTRACT

Targeted protein degradation has recently gained widespread interest as both a novel therapeutic strategy and a useful tool in biomedical research. Targeted protein degraders are often sub-stoichiometric and do not require strong binding affinity for their targets, enabling access to previously inaccessible targets. Proteolysis-targeting chimeras (PROTACs) are one class of targeted protein degraders that promote degradation by recruiting a target protein to an E3-ligase complex via a heterobifunctional molecule. The modular nature of PROTACs allows for their rational design and systematic optimization. Here we suggest resources and methodologies for developing PROTAC degraders for researchers that may be new to the field. © 2022 Wiley Periodicals LLC.


Subject(s)
Proteins , Proteolysis , Proteins/metabolism
17.
Curr Opin Chem Biol ; 67: 102114, 2022 04.
Article in English | MEDLINE | ID: mdl-35042023

ABSTRACT

Targeted protein degraders are heterobifunctional small molecules that link a target ligand or bait to an E3-ligase binder via a chemical spacer. Upon entering the cell, these ligands trigger the formation of a ternary complex between the target protein, degrader and E3-ligase, which leads to target polyubiquitination and proteasomal degradation. In recent years, TPD has expanded rapidly as a field, becoming the modality of choice in drug discovery and chemical probe development. This has been driven by the unique pharmacology of these molecules, which allows for fast and reversible knockdown of the target protein. Recent studies have demonstrated that degraders with specificity for a defined subpopulation of a protein-of-interest can be developed, giving rise to the emerging concept of protein state-specific targeting. In this article, we review advances towards developing degraders that differentiate between target protein subpopulations based on their; activation state, oligomerization state, cellular localization state, and cell type.


Subject(s)
Proteins , Proteolysis , Ubiquitin-Protein Ligases , Ligands , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
18.
Front Cell Neurosci ; 16: 801179, 2022.
Article in English | MEDLINE | ID: mdl-35317195

ABSTRACT

Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.

19.
Eur J Med Chem ; 221: 113481, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33945934

ABSTRACT

Development of inhibitors targeting CDK12/13 is of increasing interest as a potential therapy for cancers as these compounds inhibit transcription of DNA damage response (DDR) genes. We previously described THZ531, a covalent inhibitor with selectivity for CDK12/13. In order to elucidate structure-activity relationship (SAR), we have undertaken a medicinal chemistry campaign and established a focused library of THZ531 analogs. Among these analogs, BSJ-01-175 demonstrates exquisite selectivity, potent inhibition of RNA polymerase II phosphorylation, and downregulation of CDK12-targeted genes in cancer cells. A 3.0 Å co-crystal structure with CDK12/CycK provides a structural rational for selective targeting of Cys1039 located in a C-terminal extension from the kinase domain. With moderate pharmacokinetic properties, BSJ-01-175 exhibits efficacy against an Ewing sarcoma tumor growth in a patient-derived xenograft (PDX) mouse model following 10 mg/kg once a day, intraperitoneal administration. Taken together, BSJ-01-175 represents the first selective CDK12/13 covalent inhibitor with in vivo efficacy reported to date.


Subject(s)
Anilides/pharmacology , CDC2 Protein Kinase/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Animals , CDC2 Protein Kinase/metabolism , Cells, Cultured , Cyclin-Dependent Kinases/metabolism , Dose-Response Relationship, Drug , Humans , Male , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
20.
Cancer Cell ; 39(9): 1262-1278.e7, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34329586

ABSTRACT

Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.


Subject(s)
Bone Neoplasms/mortality , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/mortality , Bone Neoplasms/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockout Techniques , HEK293 Cells , Humans , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Protein Stability , Proteolysis , Sarcoma, Ewing/metabolism , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL