Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Breast Cancer Res ; 13(1): R7, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21251329

ABSTRACT

INTRODUCTION: Normal function of the p53 network is lost in most cancers, often through p53 mutation. The clinical impact of p53 mutations in breast cancer remains uncertain, especially where p53 isoforms may modify the effects of these p53 mutations. METHODS: Expression of p53ß and p53γ isoforms, the isoforms identified in normal breast tissue, was detected by reverse transcription polymerase chain reaction from a cohort of 127 primary breast tumours. Expression of p53ß and p53γ isoforms was analysed in relation to clinical markers and clinical outcomes (5 years) by binary logistic regression, Cox proportional hazards regression and Kaplan-Meier survival analyses. RESULTS: p53ß and p53γ were not randomly expressed in breast cancer. p53ß was associated with tumour oestrogen receptor (ER) expression, and p53γ was associated with mutation of the p53 gene. The patient group with the mutant p53 breast tumour-expressing p53γ isoform had low cancer recurrence and an overall survival as good as that of patients with wild-type p53 breast cancer. Conversely, patients expressing only mutant p53, without p53γ isoform expression, had a particularly poor prognosis. CONCLUSIONS: The determination of p53γ expression may allow the identification, independently of the ER status, of two subpopulations of mutant p53 breast cancer patients, one expressing p53γ with a prognosis as good as the wild-type p53 breast cancer patients and a second one not expressing p53γ with a particularly poor prognosis. The p53γ isoform may provide an explanation of the hitherto inconsistent relationship between p53 mutation, treatment response and outcome in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Mutation , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Female , Humans , Middle Aged , Prognosis , Protein Isoforms/genetics , Recurrence , Survival Analysis
2.
J Invest Dermatol ; 140(6): 1154-1165.e5, 2020 06.
Article in English | MEDLINE | ID: mdl-31705877

ABSTRACT

We performed a small interfering RNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL, and components of the anaphase-promoting complex/cyclosome (APC/C). Specifically attenuating CRL4CDT2 by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of the APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Skin Neoplasms/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Drug Screening Assays, Antitumor , Endopeptidases/genetics , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , F-Box Proteins/antagonists & inhibitors , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Knockdown Techniques , Humans , Molecular Targeted Therapy/methods , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA, Small Interfering/metabolism , Skin Neoplasms/pathology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism
3.
Cancer Res ; 66(6): 2928-36, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16540640

ABSTRACT

Activation of apoptosis is believed to be critical for the role of p53 as a tumor suppressor. Here, we report a new mouse strain carrying a human p53 transgene in the mouse p53-null background. Expression of human p53 in these mice was comparable with wild-type murine p53; however, transactivation, induction of apoptosis, and G(1)-S checkpoint, but not transrepression or regulation of a centrosomal checkpoint, were deregulated. Although multiple functions of p53 were abrogated, mice carrying the human p53 transgene did not show early onset of tumors as typically seen for p53-null mice. In contrast, human p53 in the p53-null background did not prevent accelerated tumor development after genotoxic or oncogenic stress. Such behavior of human p53 expressed at physiologic levels in transgenic cells could be explained by unexpectedly high binding with Mdm2. By using Nutlin-3a, an inhibitor of the interaction between Mdm2 and p53, we were able to partially reconstitute p53 transactivation and apoptosis in transgenic cells. Our findings indicate that the interaction between p53 and Mdm2 controls p53 transcriptional activity in homeostatic tissues and regulates DNA damage- and oncogene-induced, but not spontaneous, tumorigenesis.


Subject(s)
Apoptosis/genetics , Genes, p53 , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Transgenes , Tumor Suppressor Protein p53/biosynthesis , Animals , Female , Genetic Predisposition to Disease , Humans , Male , Mice , Mice, Transgenic , Tumor Suppressor Protein p53/genetics
4.
Oncotarget ; 9(33): 23029-23046, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29796170

ABSTRACT

We show that suppression of the spliceosome has potential for the treatment of cutaneous squamous cell carcinoma (cSCC). The small-molecule inhibitors of the spliceosome at the most advanced stage of development target the splicing factor SF3B1/SF3b155. The majority of cSCC cell lines are more sensitive than normal skin cells to death induced by the SF3B1 inhibitor pladienolide B. Knockdown of SF3B1 and a range of other splicing factors with diverse roles in the spliceosome can also selectively kill cSCC cells. We demonstrate that endogenous c-MYC participates in conferring sensitivity to spliceosome inhibition. c-MYC expression is elevated in cSCC lines and its knockdown reduces alterations in mRNA splicing and attenuates cell death caused by interference with the spliceosome. In addition, this study provides further support for a key role of the p53 pathway in the response to spliceosome disruption. SF3B1 inhibition causes wild-type p53 upregulation associated with altered mRNA splicing and reduced protein expression of both principal p53 negative regulators MDMX/MDM4 and MDM2. We observed that wild-type p53 can promote pladienolide B-induced death in tumour cells. However, p53 is commonly inactivated by mutation in cSCCs and p53 participates in killing normal skin cells at high concentrations of pladienolide B. This may limit the therapeutic window of SF3B1 inhibitors for cSCC. We provide evidence that, while suppression of SF3B1 has promise for treating cSCCs with mutant p53, inhibitors which target the spliceosome through SF3B1-independent mechanisms could have greater cSCC selectivity as a consequence of reduced p53 upregulation in normal cells.

5.
Oncotarget ; 9(29): 20265-20281, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29755650

ABSTRACT

Proteasome inhibitors have distinct properties and the biochemical consequences of suppressing ubiquitin E1 enzymes and the proteasome differ. We compared the effects of the proteasome inhibitors bortezomib, ixazomib and carfilzomib and the ubiquitin E1 enzyme inhibitor MLN7243/TAK-243 on cell viability and cell death in normal keratinocytes and cutaneous squamous cell carcinoma (cSCC) cell lines. The effects of both a pulse of treatment and more extended incubation were investigated. This is relevant to directly-delivered therapy (topical treatment/intratumoral injection) where the time of exposure can be controlled and a short exposure may better reflect systemically-delivered inhibitor pharmacokinetics. These agents can selectively kill cSCC cells but there are variations in the pattern of cSCC cell line sensitivity/resistance. Variations in the responses to proteasome inhibitors are associated with differences in the specificity of the inhibitors for the three proteolytic activities of the proteasome. There is greater selectivity for killing cSCC cells compared to normal keratinocytes with a pulse of proteasome inhibitor treatment than with a more extended exposure. We provide evidence that c-MYC-dependent NOXA upregulation confers susceptibility to a short incubation with proteasome inhibitors by priming cSCC cells for rapid BAK-dependent death. We observed that bortezomib-resistant cSCC cells can be sensitive to MLN7243-induced death. Low expression of the ubiquitin E1 UBA1/UBE1 participates in conferring susceptibility to MLN7243 by increasing sensitivity to MLN7243-mediated attenuation of ubiquitination. This study supports further investigation of the potential of proteasome and ubiquitin E1 inhibition for cSCC therapy. Direct delivery of inhibitors could facilitate adequate exposure of skin cancers.

6.
Elife ; 52016 09 15.
Article in English | MEDLINE | ID: mdl-27630122

ABSTRACT

TP53 is conventionally thought to prevent cancer formation and progression to metastasis, while mutant TP53 has transforming activities. However, in the clinic, TP53 mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53ß promotes cancer cell invasion, regardless of TP53 mutation status. Δ133p53ß increases risk of cancer recurrence and death in breast cancer patients. Furthermore Δ133p53ß is critical to define invasiveness in a panel of breast and colon cell lines, expressing WT or mutant TP53. Endogenous mutant Δ133p53ß depletion prevents invasiveness without affecting mutant full-length p53 protein expression. Mechanistically WT and mutant Δ133p53ß induces EMT. Our findings provide explanations to 2 long-lasting and important clinical conundrums: how WT TP53 can promote cancer cell invasion and reciprocally why mutant TP53 gene does not systematically induce cancer progression.


Subject(s)
Breast Neoplasms/genetics , Colonic Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Tumor Suppressor Protein p53/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Colonic Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Mutation , Neoplasm Invasiveness/genetics , Neoplasm Recurrence, Local/pathology , Protein Isoforms/genetics , Tumor Suppressor Protein p53/biosynthesis
7.
Mech Dev ; 120(12): 1433-42, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14654216

ABSTRACT

In different mammalian species, in vitro culture and manipulation can lead to aberrant fetal and peri-natal development. It has been postulated that these diverse abnormalities are caused by epigenetic alterations and that these could affect genes that are regulated by genomic imprinting. To explore this hypothesis relative to somatic cell nuclear transfer in sheep, we investigated whether the ovine H19-IGF2 and IGF2R loci are imprinted and analysed their DNA methylation status in cloned lambs. A comparison between parthenogenetic and control concepti established that imprinting at these two growth-related loci is evolutionarily conserved in sheep. As in humans and mice, IGF2R and H19 comprise differentially methylated regions (DMRs) that are methylated on one of the two parental alleles predominantly. In tongue tissue from 12 out of 13 cloned lambs analysed, the DMR in the second intron of IGF2R had strongly reduced levels of DNA methylation. The DMR located upstream of the ovine H19 gene was found to be similarly organised as in humans and mice, with multiple CTCF binding sites. At this DMR, however, aberrant methylation was observed in only one of the cloned lambs. Although the underlying mechanisms remain to be determined, our data indicate that somatic cell nuclear transfer procedures can lead to epigenetic deregulation at imprinted loci.


Subject(s)
Cell Nucleus/genetics , Cell Nucleus/physiology , Genomic Imprinting/genetics , Insulin-Like Growth Factor II/genetics , RNA, Untranslated/genetics , Receptor, IGF Type 2/genetics , Sheep/genetics , Alleles , Animals , Base Sequence , DNA Methylation , Epigenesis, Genetic/genetics , Evolution, Molecular , Female , Humans , Introns/genetics , Male , RNA, Long Noncoding , Tongue
8.
Methods Mol Biol ; 962: 1-14, 2013.
Article in English | MEDLINE | ID: mdl-23150433

ABSTRACT

The TP53 gene expresses at least nine different mRNA variants (p53 isoform mRNAs), including the one encoding the canonical p53 tumor suppressor protein. We have developed scientific tools to specifically detect and quantify p53 isoform expression at mRNA level by nested RT-PCR (reverse transcription-polymerase chain reaction) and quantitative real-time RT-PCR (RT-qPCR using the TaqMan(®) chemistry). Here, we describe these two methods, while highlighting essential points with regard to the analysis of p53 isoform mRNA expression.


Subject(s)
RNA, Messenger/analysis , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Genes, p53 , Humans , Protein Isoforms/genetics
9.
Methods Mol Biol ; 962: 15-29, 2013.
Article in English | MEDLINE | ID: mdl-23150434

ABSTRACT

The human p53 protein isoforms are expressed in several cell lines and modulate p53 tumor suppressor -activity, mainly through modulation of gene expression (1-4). Thus, identifying the pattern of p53 isoforms expression in cell lines is a key step for future studies of the p53 network (5). At the moment, the detection of p53 protein isoforms is based on the use of a panel of antibodies allowing their identification by comparing their molecular weights and their detection pattern by different antibodies (6). Here, classical protocols supplemented with technical know-how are described to detect p53 protein isoforms at protein level by Western blotting and immunoprecipitation. Furthermore, a simple method to study the impact of p53 protein isoforms on p53 transcriptional activity through luciferase reporter gene assays is provided.


Subject(s)
Blotting, Western/methods , Immunoprecipitation/methods , Tumor Suppressor Protein p53/analysis , Tumor Suppressor Protein p53/genetics , Animals , Cell Line , Drosophila , Gene Expression , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Models, Animal , Protein Isoforms/analysis , Protein Isoforms/genetics , Transcriptional Activation , Zebrafish
10.
Cell Cycle ; 11(8): 1646-55, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22487680

ABSTRACT

The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53ß. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.


Subject(s)
Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Humans , Leupeptins/chemistry , Leupeptins/pharmacology , Protein Isoforms/metabolism , Proteolysis/drug effects , Ubiquitination
11.
FEBS Lett ; 584(21): 4463-8, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20937277

ABSTRACT

p53 gene expresses several protein isoforms modulating p53-mediated responses through regulation of gene expression. Here, we identify a novel p53 isoform, Δ160p53, lacking the first 159 residues. By knockdown experiments and site-directed mutagenesis, we show that Δ160p53 is encoded by Δ133p53 transcript using ATG160 as translational initiation site. This hypothesis is supported by endogenous expression of Δ160p53 in U2OS, T47D and K562 cells, the latter ones carrying a premature stop codon that impairs p53 and Δ133p53 protein expression but not the one of Δ160p53. Overall, these results show that the Δ133p53 transcript generates two different p53 isoforms, Δ133p53 and Δ160p53.


Subject(s)
Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Amino Acid Sequence , Animals , Base Sequence , Dogs , Gene Knockdown Techniques , Humans , K562 Cells , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , Rats , Sequence Deletion , Tumor Suppressor Protein p53/metabolism
12.
Genes Dev ; 19(18): 2122-37, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16131611

ABSTRACT

The recently discovered p53-related genes, p73 and p63, express multiple splice variants and N-terminally truncated forms initiated from an alternative promoter in intron 3. To date, no alternative promoter and multiple splice variants have been described for the p53 gene. In this study, we show that p53 has a gene structure similar to the p73 and p63 genes. The human p53 gene contains an alternative promoter and transcribes multiple splice variants. We show that p53 variants are expressed in normal human tissue in a tissue-dependent manner. We determine that the alternative promoter is conserved through evolution from Drosophila to man, suggesting that the p53 family gene structure plays an essential role in the multiple activities of the p53 family members. Consistent with this hypothesis, p53 variants are differentially expressed in human breast tumors compared with normal breast tissue. We establish that p53beta can bind differentially to promoters and can enhance p53 target gene expression in a promoter-dependent manner, while Delta133p53 is dominant-negative toward full-length p53, inhibiting p53-mediated apoptosis. The differential expression of the p53 isoforms in human tumors may explain the difficulties in linking p53 status to the biological properties and drug sensitivity of human cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, p53 , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing , Animals , Apoptosis/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drosophila/genetics , Evolution, Molecular , Genes, Insect , Genes, Reporter , Genetic Variation , HT29 Cells , Humans , Introns , Luciferases/metabolism , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL