Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(4): 458-470, 2019 04.
Article in English | MEDLINE | ID: mdl-30890796

ABSTRACT

The cytokine IL-6 controls the survival, proliferation and effector characteristics of lymphocytes through activation of the transcription factors STAT1 and STAT3. While STAT3 activity is an ever-present feature of IL-6 signaling in CD4+ T cells, prior activation via the T cell antigen receptor limits IL-6's control of STAT1 in effector and memory populations. Here we found that phosphorylation of STAT1 in response to IL-6 was regulated by the tyrosine phosphatases PTPN2 and PTPN22 expressed in response to the activation of naïve CD4+ T cells. Transcriptomics and chromatin immunoprecipitation-sequencing (ChIP-seq) of IL-6 responses in naïve and effector memory CD4+ T cells showed how the suppression of STAT1 activation shaped the functional identity and effector characteristics of memory CD4+ T cells. Thus, tyrosine phosphatases induced by the activation of naïve T cells determine the way activated or memory CD4+ T cells sense and interpret cytokine signals.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , STAT1 Transcription Factor/metabolism , Signal Transduction , Animals , Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/pathology , CD4-Positive T-Lymphocytes/enzymology , CHO Cells , Cells, Cultured , Cricetulus , Gene Expression Regulation , Humans , Immunologic Memory , Interleukin-6/physiology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Interleukin-6/physiology , Synovial Membrane/immunology , Transcription, Genetic
2.
Hepatology ; 79(5): 1019-1032, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38047909

ABSTRACT

BACKGROUND: The administration of an appropriate empirical antibiotic treatment is essential in cirrhosis and severe bacterial infections. We aimed to investigate the predictors of clinical response of empirical antibiotic treatment in a prospective cohort of patients with cirrhosis and bacterial and fungal infections included in the International Club of Ascites "Global Study." METHODS: Patients hospitalized with cirrhosis and bacterial/fungal infection were prospectively enrolled at 46 centers. Clinical response to antibiotic treatment was defined according to changes in markers of infection/inflammation, vital signs, improvement of organ failure, and results of cultures. RESULTS: From October 2015 to September 2016, 1302 patients were included at 46 centers. A clinical response was achieved in only 61% of cases. Independent predictors of lack of clinical response to empirical treatment were C-reactive protein (OR = 1.16; 95% CI = 1.02-1.31), blood leukocyte count (OR = 1.39;95% CI = 1.09-1.77), serum albumin (OR = 0.70; 95% CI = 0.55-0.88), nosocomial infections (OR = 1.96; 95% CI = 1.20-2.38), pneumonia (OR = 1.75; 95% CI = 1.22-2.53), and ineffective treatment according to antibiotic susceptibility test (OR = 5.32; 95% CI = 3.47-8.57). Patients with a lack of clinical response to first-line antibiotic treatment had a significantly lower resolution rate of infections (55% vs. 96%; p < 0.001), a higher incidence of second infections (29% vs. 15%; p < 0.001), shock (35% vs. 7%; p < 0.001) and new organ failures (52% vs. 19 %; p < 0.001) than responders. Clinical response to empirical treatment was an independent predictor of 28-day survival ( subdistribution = 0.20; 95% CI = 0.14-0.27). CONCLUSIONS: Four out of 10 patients with cirrhosis do not respond to the first-line antibiotic therapy, leading to lower resolution of infections and higher mortality. Broader-spectrum antibiotics and strategies targeting systemic inflammation may improve prognosis in patients with a high degree of inflammation, low serum albumin levels, and severe liver impairment.


Subject(s)
Bacterial Infections , Mycoses , Humans , Prospective Studies , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Liver Cirrhosis/diagnosis , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Inflammation/drug therapy , Mycoses/complications , Mycoses/drug therapy , Serum Albumin
3.
J Immunol ; 211(2): 274-286, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37272871

ABSTRACT

Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, antimicrobial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA sequencing, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues from mice during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focused on the transcriptional signature of the immunomodulatory cytokine IL-6 in both settings and examined how profibrotic IFN-γ-secreting CD4+ T cells altered the interpretation of STAT1 and STAT3 cytokine cues. In resolving inflammation, STAT1 and STAT3 cooperated to drive stromal gene expression affecting antimicrobial immunity and tissue homeostasis. The introduction of IFN-γ-secreting CD4+ T cells altered this transcriptional program and channeled STAT1 and STAT3 to a previously latent IFN-γ activation site motif in Alu-like elements. STAT1 and STAT3 binding to this conserved sequence revealed evidence of reciprocal cross-regulation and gene signatures relevant to pathophysiology. Thus, we propose that effector T cells retune the transcriptional output of IL-6 by shaping a regulatory interplay between STAT1 and STAT3 in inflammation.


Subject(s)
Interleukin-6 , Th1 Cells , Animals , Mice , Cytokines/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Retroelements , STAT Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Th1 Cells/metabolism
4.
Nucleic Acids Res ; 51(10): 4713-4725, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37099382

ABSTRACT

Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.


Subject(s)
Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Humans , Phosphorothioate Oligonucleotides/chemistry , Oligonucleotides, Antisense/chemistry , DNA , Biological Transport , Sulfur
5.
Am J Transplant ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38548058

ABSTRACT

Liver transplantation (LT) has emerged as an effective therapy for severe forms of acute-on-chronic liver failure (ACLF), an entity characterized by the development of multiorgan failure and high short-term mortality. The aim of critical care management of ACLF patients is to rapidly treat precipitating events and aggressively support failing organs to ensure that patients may successfully undergo LT or, less frequently, recover. Malnutrition and sarcopenia are frequently present, adversely impacting the prognosis of these patients. Management of critical care patients with ACLF is complex and requires the participation of different specialties. Once the patient is stabilized, a rapid evaluation for salvage LT should be performed because the time window for LT is often narrow. The development of sepsis and prolonged organ support may preclude LT or diminish its chances of success. The current review describes strategies to bridge severe ACLF patients to LT, highlights the minimal evaluation required for listing and the currently suggested contraindications to proceed with LT, and addresses different aspects of management during the perioperative and early posttransplant period.

6.
Anal Chem ; 96(26): 10791-10799, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38914924

ABSTRACT

The analysis and detection of snake venom toxins are a matter of great importance in clinical diagnosis for fast treatment and the discovery of new pharmaceutical products. Current detection methods have high associated costs and require the use of sophisticated bioreceptors, which in some cases are difficult to obtain. Herein, we report the synthesis of template-based molecularly imprinted micromotors for dynamic detection of α-bungarotoxin as a model toxin present in the venom of many-banded krait (Bungarus multicinctus). The specific recognition sites are built-in in the micromotors by incubation of the membrane template with the target toxin, followed by a controlled electrodeposition of a poly(3,4-ethylenedioxythiophene)/poly(sodium 4-styrenesulfonate) polymeric layer, a magnetic Ni layer to promote magnetic guidance and facilitate washing steps, and a Pt layer for autonomous propulsion in the presence of hydrogen peroxide. The enhanced fluid mixing and autonomous propulsion increase the likelihood of interactions with the target analyte as compared with static counterparts, retaining the tetramethylrhodamine-labeled α-bungarotoxin on the micromotor surface with extremely fast dynamic sensor response (after just 20 s navigation) in only 3 µL of water, urine, or serum samples. The sensitivity achieved meets the clinically relevant concentration postsnakebite (from 0.1 to 100 µg/mL), illustrating the feasibility of the approach for practical applications. The selectivity of the protocol is very high, as illustrated by the absence of fluorescence in the micromotor surface in the presence of α-cobratoxin as a representative toxin with a size and structure similar to those of α-bungarotoxin. Recoveries higher than 95% are obtained in the analysis of urine- and serum-fortified samples. The new strategy holds considerable promise for fast, inexpensive, and even onsite detection of several toxins using multiple molecularly imprinted micromotors with tailored recognition abilities.


Subject(s)
Bungarotoxins , Bungarotoxins/chemistry , Bungarotoxins/urine , Animals , Polymers/chemistry , Snake Venoms/chemistry , Bungarus , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Molecular Imprinting , Sulfonic Acids
7.
J Antimicrob Chemother ; 79(2): 462-466, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38153116

ABSTRACT

OBJECTIVES: The aims of this study were: (i) to assess the ability of the meropenem screening breakpoint as part of the screening rapid antimicrobial susceptibility testing (sRAST) of EUCAST for the detection of OXA-48 carbapenemase-producing Klebsiella pneumoniae directly from positive blood cultures (BCs); and (ii) to evaluate the inclusion of ertapenem and temocillin discs into the sRAST to enhance the detection of OXA-48-producing isolates. METHODS: BC bottles were spiked with a total of 117 K. pneumoniae isolates, including 77 previously characterized OXA-48 producers and 40 non-OXA-48 producers. Disc diffusion assays were directly performed from positive BCs with meropenem (10 µg), ertapenem (10 µg) and temocillin (30 µg) discs, and inhibition zones were manually measured after 4, 6 and 8 h of incubation. The screening cut-off values of sRAST were applied to evaluate their capability in detecting OXA-48-producing isolates. Receiver operating characteristic curves were constructed to illustrate the performance efficacy of the disc diffusion assays to detect OXA-48 producers. RESULTS: The meropenem cut-off values of sRAST only detected 90.91% of the OXA-48-producing isolates after 6 and 8 h of incubation. With the proposed cut-off points for ertapenem [<19 mm (4/6 h) and <20 mm (8 h)] and temocillin [<10 mm (4 h) and <11 mm (6/8 h)], all OXA-48-positive isolates were detected without any false-positive results at any reading time. CONCLUSIONS: In healthcare settings with a high prevalence of OXA-48 producers, the inclusion of ertapenem and temocillin discs in the sRAST procedure may improve the detection of OXA-48-producing K. pneumoniae isolates directly from positive BCs, providing reliable results after only a 4 h incubation period.


Subject(s)
Anti-Infective Agents , Klebsiella pneumoniae , Penicillins , Ertapenem , Meropenem/pharmacology , Bacterial Proteins , beta-Lactamases , Blood Culture , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
8.
J Transl Med ; 22(1): 599, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937846

ABSTRACT

BACKGROUND: Patient heterogeneity poses significant challenges for managing individuals and designing clinical trials, especially in complex diseases. Existing classifications rely on outcome-predicting scores, potentially overlooking crucial elements contributing to heterogeneity without necessarily impacting prognosis. METHODS: To address patient heterogeneity, we developed ClustALL, a computational pipeline that simultaneously faces diverse clinical data challenges like mixed types, missing values, and collinearity. ClustALL enables the unsupervised identification of patient stratifications while filtering for stratifications that are robust against minor variations in the population (population-based) and against limited adjustments in the algorithm's parameters (parameter-based). RESULTS: Applied to a European cohort of patients with acutely decompensated cirrhosis (n = 766), ClustALL identified five robust stratifications, using only data at hospital admission. All stratifications included markers of impaired liver function and number of organ dysfunction or failure, and most included precipitating events. When focusing on one of these stratifications, patients were categorized into three clusters characterized by typical clinical features; notably, the 3-cluster stratification showed a prognostic value. Re-assessment of patient stratification during follow-up delineated patients' outcomes, with further improvement of the prognostic value of the stratification. We validated these findings in an independent prospective multicentre cohort of patients from Latin America (n = 580). CONCLUSIONS: By applying ClustALL to patients with acutely decompensated cirrhosis, we identified three patient clusters. Following these clusters over time offers insights that could guide future clinical trial design. ClustALL is a novel and robust stratification method capable of addressing the multiple challenges of patient stratification in most complex diseases.


Subject(s)
Liver Cirrhosis , Humans , Male , Female , Cluster Analysis , Middle Aged , Prognosis , Acute Disease , Algorithms , Aged , Cohort Studies
9.
Int Arch Allergy Immunol ; : 1-11, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830344

ABSTRACT

BACKGROUND: Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is the most frequent medication to be involved in hypersensitivity drug reactions (HDRs). Other analgesic/anti-inflammatory drugs in the arylpropionic group are also relevant, albeit to a lesser extent. Ibuprofen is widely consumed by people of all ages, both on medical prescription and over the counter; moreover, it is an organic contaminant of surface waters and foods. While numerous drugs cause HDR, ibuprofen's underlying mechanisms are more intricate and involve both specific immunological and non-immunological mediated reactions. SUMMARY: we concentrate on immediate responses, including urticaria with or without angioedema, anaphylaxis, and angioedema, classifying reactions according to whether they are caused by single or multiple NSAIDs and based on the mechanisms at play. Both groups may experience anaphylaxis, defined as an immediate, severe systemic reaction involving at least two organs, though the frequency and severity can vary. Following this classification, more clinical manifestations can be identified. Diagnosis is partly based on a detailed clinical history, including information about ibuprofen and/or other arylpropionic derivatives involved, the interval between drug intake and symptoms onset, clinical manifestations, number of episodes, and the patient's tolerance or response to other medications - mainly non-chemically related NSAID - both before and after reactions to ibuprofen and/or other arylpropionic drugs. A drug provocation test is frequently necessary to make a diagnosis. KEY MESSAGE: Because ibuprofen is the most widely prescribed NSAID, it is reasonable to assume its role as the leading cause of HDR will only become more important.

10.
FASEB J ; 37(11): e23220, 2023 11.
Article in English | MEDLINE | ID: mdl-37801035

ABSTRACT

Patients with cystic fibrosis (CF) exhibit pronounced respiratory damage and were initially considered among those at highest risk for serious harm from SARS-CoV-2 infection. Numerous clinical studies have subsequently reported that individuals with CF in North America and Europe-while susceptible to severe COVID-19-are often spared from the highest levels of virus-associated mortality. To understand features that might influence COVID-19 among patients with cystic fibrosis, we studied relationships between SARS-CoV-2 and the gene responsible for CF (i.e., the cystic fibrosis transmembrane conductance regulator, CFTR). In contrast to previous reports, we found no association between CFTR carrier status (mutation heterozygosity) and more severe COVID-19 clinical outcomes. We did observe an unexpected trend toward higher mortality among control individuals compared with silent carriers of the common F508del CFTR variant-a finding that will require further study. We next performed experiments to test the influence of homozygous CFTR deficiency on viral propagation and showed that SARS-CoV-2 production in primary airway cells was not altered by the absence of functional CFTR using two independent protocols. On the contrary, experiments performed in vitro strongly indicated that virus proliferation depended on features of the mucosal fluid layer known to be disrupted by absent CFTR in patients with CF, including both low pH and increased viscosity. These results point to the acidic, viscous, and mucus-obstructed airways in patients with cystic fibrosis as unfavorable for the establishment of coronaviral infection. Our findings provide new and important information concerning relationships between the CF clinical phenotype and severity of COVID-19.


Subject(s)
COVID-19 , Cystic Fibrosis , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Patient Acuity , SARS-CoV-2
11.
Nature ; 563(7730): 235-240, 2018 11.
Article in English | MEDLINE | ID: mdl-30356213

ABSTRACT

Biosynthesis of glycogen, the essential glucose (and hence energy) storage molecule in humans, animals and fungi1, is initiated by the glycosyltransferase enzyme, glycogenin (GYG). Deficiencies in glycogen formation cause neurodegenerative and metabolic disease2-4, and mouse knockout5 and inherited human mutations6 of GYG impair glycogen synthesis. GYG acts as a 'seed core' for the formation of the glycogen particle by catalysing its own stepwise autoglucosylation to form a covalently bound gluco-oligosaccharide chain at initiation site Tyr 195. Precise mechanistic studies have so far been prevented by an inability to access homogeneous glycoforms of this protein, which unusually acts as both catalyst and substrate. Here we show that unprecedented direct access to different, homogeneously glucosylated states of GYG can be accomplished through a palladium-mediated enzyme activation 'shunt' process using on-protein C-C bond formation. Careful mimicry of GYG intermediates recapitulates catalytic activity at distinct stages, which in turn allows discovery of triphasic kinetics and substrate plasticity in GYG's use of sugar substrates. This reveals a tolerant but 'proof-read' mechanism that underlies the precision of this metabolic process. The present demonstration of direct, chemically controlled access to intermediate states of active enzymes suggests that such ligation-dependent activation could be a powerful tool in the study of mechanism.


Subject(s)
Glucose/biosynthesis , Palladium/metabolism , Biocatalysis , Enzyme Activation , Galactose/metabolism , Glucosyltransferases/metabolism , Glycoproteins/metabolism , Glycosylation , Humans , Kinetics , Uridine Diphosphate/metabolism
12.
Curr Microbiol ; 81(8): 225, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877167

ABSTRACT

Linezolid resistance in Enterococcus spp. is increasingly considered critically important and a public health threat which mandates the need to understand their genomic contents and dissemination patterns. Here, we used whole-genome sequencing to characterize the resistome, virulome and mobile genetic elements of nine linezolid-resistant (LZDR) enterococci (seven optrA-E. faecalis, one poxtA-E. faecium and one optrA-E. casseliflavus) previously obtained from the nares of healthy dogs, pigs, pig farmers and tracheal samples of nestling storks in Spain. Also, the relatedness of the isolates with publicly available genomes was accessed by core-genome single nucleotide polymorphism (SNP) analysis. The optrA gene of the E. faecalis and E. casseliflavus isolates was located downstream of the fexA gene. The optrA gene in the E. casseliflavus isolate was carried in a plasmid (pURX4962), while those in the seven E. faecalis isolates were chromosomally located. The OptrA proteins were mostly variants of wild type (DP-2: Y176D/T481P; RDK: I104R/Y176D/E256K; DD-3: Y176D/G393D; and EDD: K3E/Y176D/G393D), except two that were wild type (one E. faecalis and one E. casseliflavus). The poxtA gene in the E. faecium isolate was found alone within its contig. The cfrD was upstream of ermB gene in the E. casseliflavus isolate and flanked by ISNCY and IS1216. All the LZDR enterococci carried plasmid rep genes (2-3) containing tetracycline, chloramphenicol and aminoglycoside resistance genes. All isolates except E. casseliflavus carried at least one intact prophage, of which E. faecalis-ST330 (X4957) from a pig carried the highest (n = 5). Tn6260 was associated with lnuG in E. faecalis-ST330 while Tn554 was with fexA in E. feaecalis-ST59 isolates. All except E. casseliflavus (n = 0) carried at least two metal resistance genes (MRGs), of which poxtA-carrying E. faecium-ST1739 isolate contained the most (arsA, copA, fief, ziaA, znuA, zosA, zupT, and zur). SNP-based analyses identified closely related optrA-E. faecalis isolates from a pig and a pig farmer on the same farm (SNP = 4). Moreover, optrA- carrying E. faecalis-ST32, -ST59, and -ST474 isolates from pigs were related to those previously described from humans (sick and healthy) and cattle in Spain, Belgium, and Switzerland (SNP range 43-86). These findings strongly suggest the transmission of LZDR-E. faecalis between a pig and a pig farmer and potential inter-country dissemination. These highlight the need to strengthen molecular surveillance of LZDR enterococci in all ecological niches and body parts to direct appropriate control strategies.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus , Genome, Bacterial , Linezolid , Phylogeny , Animals , Linezolid/pharmacology , Swine/microbiology , Drug Resistance, Bacterial/genetics , Dogs , Anti-Bacterial Agents/pharmacology , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification , Enterococcus/classification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/transmission , Gram-Positive Bacterial Infections/veterinary , Humans , Whole Genome Sequencing , Spain , Polymorphism, Single Nucleotide , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Genomics , Plasmids/genetics
13.
Zygote ; 32(1): 96-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38173402

ABSTRACT

Despite the high level of standardization of the intracytoplasmic sperm injection (ICSI) technique, there are some aspects that deserve special attention and should still be improved. The major drawback of the technique is its invasiveness, as during cytoplasmic aspiration different structures of the oocyte may be lost or damaged. This is partly because the microtools used in ICSI were not specially designed for assisted reproduction but for other medical-biological disciplines. In view of the above caveats, the aim of the study was to compare the results of ICSI with the traditional oocyte-holding pipette and the oocyte-holding pipette without aspiration (PiWA). In total, 155 patients and 1037 oocytes were included in the study. In each ICSI cycle, half of the oocytes were microinjected using a traditional holding pipette and the other half using a PiWA. In result, the PiWA technique produced a significant increase in the fertilization rate: 88.12% (95%CI: 84.62-90.92%); holding pipette: 73.33% (95%CI: 68.72-77.49%). Also, it produced a significant decrease in the embryo degeneration rate compared with the traditional holding pipette [PiWA: 2.07% (95%CI: 1.11-3.8%); holding pipette: 4.51% (95%CI: 3.06-6.59%)]. Pregnancy rate depended on the holding technique used, both in single embryo transfers (n = 59; χ2 = 4.608; P-value = 0.032) and double embryo transfers (n = 156; χ2 = 4.344; P-value = 0.037); with PiWA presenting a significantly higher pregnancy rate than the traditional holding technique. Based on current evidence and the present results, improvements should focus on decreasing the invasiveness of the microinjection itself by minimizing or avoiding aspiration and cytoplasmic disorganization, as is successfully achieved with PiWA.


Subject(s)
Infertility, Male , Sperm Injections, Intracytoplasmic , Pregnancy , Female , Humans , Male , Sperm Injections, Intracytoplasmic/methods , Semen , Pregnancy Rate , Oocytes
14.
Sensors (Basel) ; 24(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38676073

ABSTRACT

In the railway sector, rolling stock and infrastructure must be maintained in perfect condition to ensure reliable and safe operation for passengers. Climate change is affecting the urban and regional infrastructure through sea level rise, water accumulations, river flooding, and other increased-frequency extreme natural situations (heavy rains or snows) which pose a challenge to maintenance. In this paper, the use of artificial intelligence based on predictive maintenance implementation is proposed for the early detection of degraded conditions of a bridge due to extreme climatic conditions. For this prediction, continuous monitoring is proposed, with the aim of establishing alarm thresholds to detect dangerous situations, so restrictions could be determined to mitigate the risk. However, one of the main challenges for railway infrastructure managers nowadays is the high cost of monitoring large infrastructures. In this work, a methodology for monitoring railway infrastructures to define the optimal number of transductors that are economically viable and the thresholds according to which infrastructure managers can make decisions concerning traffic safety is proposed. The methodology consists of three phases that use the application of machine learning (Random Forest) and artificial cognitive systems (LSTM recurrent neural networks).

15.
J Environ Manage ; 364: 121436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875985

ABSTRACT

This study assessed for the first time the bioremediation potential of an organic horse amendment in soils contaminated with solid wastes of the obsolete pesticide lindane (α-hexachlorocyclohexane (α-HCH) = 80 mg kg-1, ß-HCH = 40 mg kg-1, γ,δ,ε-HCH≈10 mg kg-1) searching for a self-sufficient bio-based economy. Four treatments were implemented: polluted (PS, ΣHCHs = 130 mg kg-1) and control (CS, ΣHCHs = 1.24 mg kg-1) soils and the respective amended soils (APS and ACS). A commercial amendment, coming from organic wastes, was used for soil biostimulation (5% dry weight), and the temporal evolution of the enzymatic activity (dehydrogenase, ß-glucosidase activity, phenoloxidase, arylamidase, phosphatase, and urease) and HCHs concentration of the soils was evaluated over 55 days under controlled humidity and temperature conditions. The horse amendment positively influenced the physicochemical properties of the soil by reducing pH (from 8.3 to 8) and increasing the organic matter (TOC from 0.5 to 3.3%) and nutrient content (P and NH4+ from 24.1 to 13.7 to 142.1 and 41.2 mg kg-1, respectively). Consequently, there was a notable enhancement in the soil biological activity, specifically in the enzymatic activity of dehydrogenase, phenol-oxidase, phosphatase, and urease and, therefore, in HCH degradation, which increased from <1 to 75% after the incubation period. According to the chlorine position on the cyclohexane ring, the following ranking has been found for HCHs degradation: ß-HCH (46%) < Îµ-HCH (57%) < α-HCH (91%) ≈ Î´-HCH (91%) < Î³-HCH (100%). Pentachlorocyclohexene (PCCH) and 1,2,4-trichlorobenzene (1,2,4-TCB) were identified as HCHs degradation metabolites and disappeared at the end of the incubation time. Although further research is required, these preliminary findings suggest that organic amendments represent a sustainable, harmless, and cost-effective biostimulation approach for remediating soils contaminated with recalcitrant HCHs, boosting the circular economy.


Subject(s)
Biodegradation, Environmental , Hexachlorocyclohexane , Soil Pollutants , Soil , Soil/chemistry , Horses , Animals
16.
Environ Monit Assess ; 196(7): 619, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878080

ABSTRACT

Helicobacter pylori is a microorganism that infects 60% of the population and is considered the main cause of atrophic gastritis, gastric and duodenal ulcers, and gastric cancer. Different emerging pathogens have been found in drinking water and their presence is considered to be an important public health problem. For this reason, it is necessary to carry out the validation of reliable technologies for this type of pathogens and evaluate their performance. This paper reports, for the first time, H. pylori reduction in a drinking water pilot plant of two slow sand filters (SSF). Inlet water was taken from a gravel filtration system of a rural water supply in Colombia and then inoculated with viable cells of H. pylori. By determining the Genomic Units (GU) through quantitative Polymerase Chain Reaction (qPCR), the concentration of GU/sample was measured. In the inlet water amplification for SSF1 and SSF2 were 5.13 × 102 ± 4.48 × 102 and 6.59 × 102 ± 7.32 × 102, respectively, while for the treated water they were 7.0 ± 5.6 and 2.05 × 101 ± 2.9 × 101 GU/sample for SSF1 and SSF2, respectively. The SSF pilot plant reached up to 3 log reduction units of H. pylori; therefore, since there is not an H. pylori contamination indicator and its periodic monitoring is financially complicated, the SSF could guarantee the drinking water quality necessity that exists in rural areas and small municipalities in developing countries, where infection rates and prevalence of this pathogen are high.


Subject(s)
Drinking Water , Filtration , Helicobacter pylori , Water Microbiology , Water Purification , Water Supply , Filtration/methods , Drinking Water/microbiology , Water Purification/methods , Sand , Colombia
17.
Gut ; 72(8): 1581-1591, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36788015

ABSTRACT

BACKGROUND AND AIMS: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Methoxyhydroxyphenylglycol , Humans , Prognosis , Prospective Studies , Liver Cirrhosis/complications , Inflammation/complications , Metabolomics , Mitochondria
18.
Semin Liver Dis ; 43(2): 206-217, 2023 05.
Article in English | MEDLINE | ID: mdl-37369227

ABSTRACT

Intensive care unit (ICU) admission is frequently required in patients with decompensated cirrhosis for organ support. This entity, known as acute-on-chronic liver failure (ACLF), is associated with high short-term mortality. ICU management of ACLF is complex, as these patients are prone to develop new organ failures and infectious or bleeding complications. Poor nutritional status, lack of effective liver support systems, and shortage of liver donors are also factors that contribute to increase their mortality. ICU therapy parallels that applied in the general ICU population in some complications but has differential characteristics in others. This review describes the current knowledge on critical care management of patients with ACLF including organ support, prognostic assessment, early liver transplantation, and futility rules. Certainties and knowledge gaps in this area are also discussed.


Subject(s)
Acute-On-Chronic Liver Failure , Liver Transplantation , Humans , Acute-On-Chronic Liver Failure/diagnosis , Acute-On-Chronic Liver Failure/therapy , Critical Care , Prognosis , Intensive Care Units , Liver Transplantation/adverse effects , Liver Cirrhosis/complications , Liver Cirrhosis/therapy
19.
J Hepatol ; 79(1): 79-92, 2023 07.
Article in English | MEDLINE | ID: mdl-37268222

ABSTRACT

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterized by severe systemic inflammation, multi-organ failure and high mortality rates. Its treatment is an urgent unmet need. DIALIVE is a novel liver dialysis device that aims to exchange dysfunctional albumin and remove damage- and pathogen-associated molecular patterns. This first-in-man randomized-controlled trial was performed with the primary aim of assessing the safety of DIALIVE in patients with ACLF, with secondary aims of evaluating its clinical effects, device performance and effect on pathophysiologically relevant biomarkers. METHODS: Thirty-two patients with alcohol-related ACLF were included. Patients were treated with DIALIVE for up to 5 days and end points were assessed at Day 10. Safety was assessed in all patients (n = 32). The secondary aims were assessed in a pre-specified subgroup that had at least three treatment sessions with DIALIVE (n = 30). RESULTS: There were no significant differences in 28-day mortality or occurrence of serious adverse events between the groups. Significant reduction in the severity of endotoxemia and improvement in albumin function was observed in the DIALIVE group, which translated into a significant reduction in the CLIF-C (Chronic Liver Failure consortium) organ failure (p = 0.018) and CLIF-C ACLF scores (p = 0.042) at Day 10. Time to resolution of ACLF was significantly faster in DIALIVE group (p = 0.036). Biomarkers of systemic inflammation such as IL-8 (p = 0.006), cell death [cytokeratin-18: M30 (p = 0.005) and M65 (p = 0.029)], endothelial function [asymmetric dimethylarginine (p = 0.002)] and, ligands for Toll-like receptor 4 (p = 0.030) and inflammasome (p = 0.002) improved significantly in the DIALIVE group. CONCLUSIONS: These data indicate that DIALIVE appears to be safe and impacts positively on prognostic scores and pathophysiologically relevant biomarkers in patients with ACLF. Larger, adequately powered studies are warranted to further confirm its safety and efficacy. IMPACT AND IMPLICATIONS: This is the first-in-man clinical trial which tested DIALIVE, a novel liver dialysis device for the treatment of cirrhosis and acute-on-chronic liver failure, a condition associated with severe inflammation, organ failures and a high risk of death. The study met the primary endpoint, confirming the safety of the DIALIVE system. Additionally, DIALIVE reduced inflammation and improved clinical parameters. However, it did not reduce mortality in this small study and further larger clinical trials are required to re-confirm its safety and to evaluate efficacy. CLINICAL TRIAL NUMBER: NCT03065699.


Subject(s)
Acute-On-Chronic Liver Failure , End Stage Liver Disease , Humans , Acute-On-Chronic Liver Failure/therapy , Acute-On-Chronic Liver Failure/complications , Standard of Care , Prognosis , Renal Dialysis/adverse effects , Liver Cirrhosis/complications , Biomarkers , Inflammation/complications
20.
N Engl J Med ; 383(16): 1522-1534, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32558485

ABSTRACT

BACKGROUND: There is considerable variation in disease behavior among patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19). Genomewide association analysis may allow for the identification of potential genetic factors involved in the development of Covid-19. METHODS: We conducted a genomewide association study involving 1980 patients with Covid-19 and severe disease (defined as respiratory failure) at seven hospitals in the Italian and Spanish epicenters of the SARS-CoV-2 pandemic in Europe. After quality control and the exclusion of population outliers, 835 patients and 1255 control participants from Italy and 775 patients and 950 control participants from Spain were included in the final analysis. In total, we analyzed 8,582,968 single-nucleotide polymorphisms and conducted a meta-analysis of the two case-control panels. RESULTS: We detected cross-replicating associations with rs11385942 at locus 3p21.31 and with rs657152 at locus 9q34.2, which were significant at the genomewide level (P<5×10-8) in the meta-analysis of the two case-control panels (odds ratio, 1.77; 95% confidence interval [CI], 1.48 to 2.11; P = 1.15×10-10; and odds ratio, 1.32; 95% CI, 1.20 to 1.47; P = 4.95×10-8, respectively). At locus 3p21.31, the association signal spanned the genes SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1. The association signal at locus 9q34.2 coincided with the ABO blood group locus; in this cohort, a blood-group-specific analysis showed a higher risk in blood group A than in other blood groups (odds ratio, 1.45; 95% CI, 1.20 to 1.75; P = 1.48×10-4) and a protective effect in blood group O as compared with other blood groups (odds ratio, 0.65; 95% CI, 0.53 to 0.79; P = 1.06×10-5). CONCLUSIONS: We identified a 3p21.31 gene cluster as a genetic susceptibility locus in patients with Covid-19 with respiratory failure and confirmed a potential involvement of the ABO blood-group system. (Funded by Stein Erik Hagen and others.).


Subject(s)
ABO Blood-Group System/genetics , Betacoronavirus , Chromosomes, Human, Pair 3/genetics , Coronavirus Infections/genetics , Genetic Predisposition to Disease , Pneumonia, Viral/genetics , Polymorphism, Single Nucleotide , Respiratory Insufficiency/genetics , Aged , COVID-19 , Case-Control Studies , Chromosomes, Human, Pair 9/genetics , Coronavirus Infections/complications , Female , Genetic Loci , Genome-Wide Association Study , Humans , Italy , Male , Middle Aged , Multigene Family , Pandemics , Pneumonia, Viral/complications , Respiratory Insufficiency/etiology , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL