Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38513609

ABSTRACT

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Subject(s)
Brassicaceae , Fruit , Gene Expression Regulation, Plant , Germination , Seeds , Temperature , Germination/genetics , Germination/physiology , Seeds/genetics , Seeds/physiology , Seeds/growth & development , Seeds/metabolism , Brassicaceae/genetics , Brassicaceae/physiology , Brassicaceae/metabolism , Fruit/genetics , Fruit/physiology , Fruit/growth & development , Fruit/metabolism , Plant Growth Regulators/metabolism , Transcriptome/genetics , Plant Dormancy/genetics , Plant Dormancy/physiology , Abscisic Acid/metabolism
2.
New Phytol ; 241(3): 1144-1160, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072860

ABSTRACT

Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination. This included the genome of its close relative, but slower growing and photodamage sensitive, C. sorokiniana UTEX 1663. A larger number of ribosome-encoding genes, high intron abundance, increased codon bias and unique genes potentially involved in metabolic flexibility and resistance to photodamage are all consistent with the faster growth of C. ohadii. Some of these characteristics highlight general trends in Chlorophyta and Chlorella spp. evolution, and others open new broad avenues for mechanistic exploration of their relationship with growth. This work entails a unique case study for the genomic adaptations and costs of exceptionally fast growth and sheds light on the genomic signatures of fast growth in photosynthetic cells. It also provides an important resource for future studies leveraging the unique properties of C. ohadii for photosynthesis and stress response research alongside their utilization for synthetic biology and biotechnology aims.


Subject(s)
Chlorella , Chlorella/genetics , Photosynthesis , Genomics
3.
Bioinformatics ; 38(16): 4048-4050, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35748710

ABSTRACT

SUMMARY: EasyGDB is an easy-to-implement low-maintenance tool developed to create genomic data management web platforms. It can be used for any species, group of species, or multiple genome or annotation versions. EasyGDB provides a framework to develop a web portal that includes the general information about species, projects and members, and bioinformatics tools such as file downloads, BLAST, genome browser, annotation search, gene expression visualization, annotation and sequence download, and gene ids and orthologs lookup. The code of EasyGDB facilitates data maintenance and update for non-experienced bioinformaticians, using BLAST databases to store and retrieve sequence data in gene annotation pages and bioinformatics tools, and JSON files to customize metadata. EasyGDB is a highly customizable tool. Any section and tool can be enabled or disabled like a switch through a single configuration file. This tool aims to simplify the development of genomics portals in non-model species, providing a modern web style with embedded interactive bioinformatics tools to cover all the common needs derived from genomics projects. AVAILABILITY AND IMPLEMENTATION: The code and manual to use EasyGDB can be found at https://github.com/noefp/easy_gdb.


Subject(s)
Genome , Genomics , Software , Computational Biology , Molecular Sequence Annotation
4.
Plant J ; 106(1): 275-293, 2021 04.
Article in English | MEDLINE | ID: mdl-33453123

ABSTRACT

Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA-seq libraries and 136 307 full-length PacBio Iso-seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At-α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS-box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full-length transcripts related to ABA-mediated seed dormancy discovered a conserved isoform of PIF6-ß and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).


Subject(s)
Brassicaceae/metabolism , Brassicaceae/physiology , Germination/physiology , Seeds/metabolism , Seeds/physiology , Brassicaceae/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome, Plant/genetics , Germination/genetics , Seeds/genetics
5.
BMC Plant Biol ; 22(1): 340, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836106

ABSTRACT

BACKGROUND: Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS: We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS: Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.


Subject(s)
Brassicaceae , Lepidium , Brassicaceae/genetics , Brassicaceae/metabolism , Flowers/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Lepidium/genetics , Transcriptome
6.
J Exp Bot ; 73(13): 4291-4305, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35148385

ABSTRACT

Bryophytes are useful models for the study of plant evolution, development, plant-fungal symbiosis, stress responses, and gametogenesis. Additionally, their dominant haploid gametophytic phase makes them great models for functional genomics research, allowing straightforward genome editing and gene knockout via CRISPR or homologous recombination. Until 2016, however, the only bryophyte genome sequence published was that of Physcomitrium patens. Throughout recent years, several other bryophyte genomes and transcriptome datasets became available, enabling better comparative genomics in evolutionary studies. The increase in the number of bryophyte genome and transcriptome resources available has yielded a plethora of annotations, databases, and bioinformatics tools to access the new data, which covers the large diversity of this clade and whose biology comprises features such as association with arbuscular mycorrhiza fungi, sex chromosomes, low gene redundancy, or loss of RNA editing genes for organellar transcripts. Here we provide a guide to resources available for bryophytes with regards to genome and transcriptome databases and bioinformatics tools.


Subject(s)
Bryophyta , Transcriptome , Bryophyta/genetics , Computational Biology , Genomics , Phylogeny
7.
Plant J ; 102(1): 165-177, 2020 04.
Article in English | MEDLINE | ID: mdl-31714620

ABSTRACT

Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web-based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de.


Subject(s)
Bryopsida/genetics , Transcriptome , Atlases as Topic , Bryopsida/metabolism , Datasets as Topic , Gene Expression/genetics , Genes, Plant/genetics , Internet , Mycorrhizae/metabolism , Transcriptome/genetics
8.
Bioinformatics ; 36(11): 3314-3321, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32181821

ABSTRACT

MOTIVATION: Bisulfite sequencing (BS-seq) is a state-of-the-art technique for investigating methylation of the DNA to gain insights into the epigenetic regulation. Several algorithms have been published for identification of differentially methylated regions (DMRs). However, the performances of the individual methods remain unclear and it is difficult to optimally select an algorithm in application settings. RESULTS: We analyzed BS-seq data from four plants covering three taxonomic groups. We first characterized the data using multiple summary statistics describing methylation levels, coverage, noise, as well as frequencies, magnitudes and lengths of methylated regions. Then, simulated datasets with most similar characteristics to real experimental data were created. Seven different algorithms (metilene, methylKit, MOABS, DMRcate, Defiant, BSmooth, MethylSig) for DMR identification were applied and their performances were assessed. A blind and independent study design was chosen to reduce bias and to derive practical method selection guidelines. Overall, metilene had superior performance in most settings. Data attributes, such as coverage and spread of the DMR lengths, were found to be useful for selecting the best method for DMR detection. A decision tree to select the optimal approach based on these data attributes is provided. The presented procedure might serve as a general strategy for deriving algorithm selection rules tailored to demands in specific application settings. AVAILABILITY AND IMPLEMENTATION: Scripts that were used for the analyses and that can be used for prediction of the optimal algorithm are provided at https://github.com/kreutz-lab/DMR-DecisionTree. Simulated and experimental data are available at https://doi.org/10.6084/m9.figshare.11619045. CONTACT: ckreutz@imbi.uni-freiburg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Benchmarking , Epigenesis, Genetic , Algorithms , DNA Methylation , Research Design , Sequence Analysis, DNA
9.
BMC Genomics ; 20(1): 95, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30700268

ABSTRACT

BACKGROUND: RNA-sequencing analysis is increasingly utilized to study gene expression in non-model organisms without sequenced genomes. Aethionema arabicum (Brassicaceae) exhibits seed dimorphism as a bet-hedging strategy - producing both a less dormant mucilaginous (M+) seed morph and a more dormant non-mucilaginous (NM) seed morph. Here, we compared de novo and reference-genome based transcriptome assemblies to investigate Ae. arabicum seed dimorphism and to evaluate the reference-free versus -dependent approach for identifying differentially expressed genes (DEGs). RESULTS: A de novo transcriptome assembly was generated using sequences from M+ and NM Ae. arabicum dry seed morphs. The transcripts of the de novo assembly contained 63.1% complete Benchmarking Universal Single-Copy Orthologs (BUSCO) compared to 90.9% for the transcripts of the reference genome. DEG detection used the strict consensus of three methods (DESeq2, edgeR and NOISeq). Only 37% of 1533 differentially expressed de novo assembled transcripts paired with 1876 genome-derived DEGs. Gene Ontology (GO) terms distinguished the seed morphs: the terms translation and nucleosome assembly were overrepresented in DEGs higher in abundance in M+ dry seeds, whereas terms related to mRNA processing and transcription were overrepresented in DEGs higher in abundance in NM dry seeds. DEGs amongst these GO terms included ribosomal proteins and histones (higher in M+), RNA polymerase II subunits and related transcription and elongation factors (higher in NM). Expression of the inferred DEGs and other genes associated with seed maturation (e.g. those encoding late embryogenesis abundant proteins and transcription factors regulating seed development and maturation such as ABI3, FUS3, LEC1 and WRI1 homologs) were put in context with Arabidopsis thaliana seed maturation and indicated that M+ seeds may desiccate and mature faster than NM. The 1901 transcriptomic DEG set GO-terms had almost 90% overlap with the 2191 genome-derived DEG GO-terms. CONCLUSIONS: Whilst there was only modest overlap of DEGs identified in reference-free versus -dependent approaches, the resulting GO analysis was concordant in both approaches. The identified differences in dry seed transcriptomes suggest mechanisms underpinning previously identified contrasts between morphology and germination behaviour of M+ and NM seeds.


Subject(s)
Brassicaceae/growth & development , Brassicaceae/genetics , Gene Expression Regulation, Plant , Seeds/growth & development , Seeds/genetics , Transcriptome , Gene Expression Profiling , Gene Ontology , Genome, Plant , Germination , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Plant Proteins/genetics
10.
Bioinformatics ; 33(15): 2397-2398, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28379331

ABSTRACT

SUMMARY: With the development of new high-throughput DNA sequencing technologies and decreasing costs, large gene expression datasets are being generated at an accelerating rate, but can be complex to visualize. New, more interactive and intuitive tools are needed to visualize the spatiotemporal context of expression data and help elucidate gene function. Using tomato fruit as a model, we have developed the Tomato Expression Atlas to facilitate effective data analysis, allowing the simultaneous visualization of groups of genes at a cell/tissue level of resolution within an organ, enhancing hypothesis development and testing in addition to candidate gene identification. This atlas can be adapted to different types of expression data from diverse multicellular species. AVAILABILITY AND IMPLEMENTATION: The Tomato Expression Atlas is available at http://tea.solgenomics.net/ . Source code is available at https://github.com/solgenomics/Tea . CONTACT: jr286@cornell.edu or lam87@cornell.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Databases, Nucleic Acid , Gene Expression Regulation, Plant , Sequence Analysis, RNA/methods , Solanum lycopersicum/genetics , Transcriptome , High-Throughput Nucleotide Sequencing , Organ Specificity
11.
Mol Plant Microbe Interact ; 30(9): 725-738, 2017 09.
Article in English | MEDLINE | ID: mdl-28535079

ABSTRACT

The Pti1 kinase was identified from a reverse genetic screen as contributing to pattern-triggered immunity (PTI) against Pseudomonas syringae pv. tomato (Pst). The tomato genome has two Pti1 genes, referred to as Pti1a and Pti1b. A hairpin-Pti1 (hpPti1) construct was developed and was used to generate two independent stable transgenic tomato lines that had reduced transcript abundance of both genes. In response to P. syringae pv. tomato inoculation, these hpPti1 plants developed more severe disease symptoms, supported higher bacterial populations, and had reduced transcript accumulation of PTI-associated genes, as compared with wild-type plants. In response to two flagellin-derived peptides, the hpPti1 plants produced lesser amounts of reactive oxygen species (ROS) but showed no difference in mitogen-activated protein kinase (MAPK). Synthetic Pti1a and Pti1b genes designed to avoid silencing were transiently expressed in the hpPti1 plants and restored the ability of the plants to produce wild-type levels of ROS. Our results identify a new component of PTI in tomato that, because it affects ROS production but not MAPK signaling, appears to act early in the immune response.


Subject(s)
Disease Resistance , Flagellin/pharmacology , Peptides/pharmacology , Plant Diseases/microbiology , Plant Proteins/metabolism , Pseudomonas syringae/physiology , Reactive Oxygen Species/metabolism , Solanum lycopersicum/enzymology , Biological Assay , Cell Death/drug effects , Disease Resistance/drug effects , Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Gene Silencing , Genes, Plant , Genetic Complementation Test , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Plant Diseases/genetics , Plant Immunity/drug effects , Plants, Genetically Modified , Pseudomonas syringae/drug effects , Sequence Analysis, RNA
12.
BMC Genomics ; 18(1): 653, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28830347

ABSTRACT

BACKGROUND: Allopolyploids contain genomes composed of more than two complete sets of chromosomes that originate from at least two species. Allopolyploidy has been suggested as an important evolutionary mechanism that can lead to instant speciation. Arabidopsis suecica is a relatively recent allopolyploid species, suggesting that its natural accessions might be genetically very similar to each other. Nonetheless, subtle phenotypic differences have been described between different geographic accessions of A. suecica grown in a common garden. RESULTS: To determine the degree of genomic similarity between different populations of A. suecica, we obtained transcriptomic sequence, quantified SNP variation within the gene space, and analyzed gene expression levels genome-wide from leaf material grown in controlled lab conditions. Despite their origin from the same progenitor species, the two accessions of A. suecica used in our study show genomic and transcriptomic variation. We report significant gene expression differences between the accessions, mostly in genes with stress-related functions. Among the differentially expressed genes, there are a surprising number of homoeologs coordinately regulated between sister accessions. CONCLUSIONS: Many of these homoeologous genes and other differentially expressed genes affect transpiration and stomatal regulation, suggesting that they might be involved in the establishment of the phenotypic differences between the two accessions.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Genes, Plant/genetics , Genetic Variation , Polyploidy , Stress, Physiological/genetics , Gene Ontology , Genomics
13.
Nucleic Acids Res ; 43(Database issue): D1036-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25428362

ABSTRACT

The Sol Genomics Network (SGN, http://solgenomics.net) is a web portal with genomic and phenotypic data, and analysis tools for the Solanaceae family and close relatives. SGN hosts whole genome data for an increasing number of Solanaceae family members including tomato, potato, pepper, eggplant, tobacco and Nicotiana benthamiana. The database also stores loci and phenotype data, which researchers can upload and edit with user-friendly web interfaces. Tools such as BLAST, GBrowse and JBrowse for browsing genomes, expression and map data viewers, a locus community annotation system and a QTL analysis tools are available. A new tool was recently implemented to improve Virus-Induced Gene Silencing (VIGS) constructs called the SGN VIGS tool. With the growing genomic and phenotypic data in the database, SGN is now advancing to develop new web-based breeding tools and implement the code and database structure for other species or clade-specific databases.


Subject(s)
Databases, Nucleic Acid , Genome, Plant , Solanaceae/genetics , Breeding , Crosses, Genetic , Genomics , Genotype , Internet , Phenotype , Solanaceae/metabolism
14.
BMC Genomics ; 17: 248, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26988219

ABSTRACT

BACKGROUND: Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. RESULTS: We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. CONCLUSIONS: The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Fusarium , Physalis/genetics , Plant Diseases/genetics , Genetic Markers , Genotype , Phenotype , Physalis/microbiology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Transcriptome
15.
BMC Genomics ; 17: 148, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26922242

ABSTRACT

BACKGROUND: In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. RESULTS: In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. CONCLUSIONS: The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.


Subject(s)
Genome, Plant , Models, Genetic , Pinus/genetics , Chromosomes, Artificial, Bacterial , DNA, Plant/genetics , Exons , Gene Library , Genomics/methods , Introns , Sequence Analysis, DNA
17.
Plant Physiol ; 169(3): 1727-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26378100

ABSTRACT

As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.


Subject(s)
Aphids/physiology , Gene Expression Profiling , Metabolomics , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Zea mays/genetics , Animals , Benzoxazines/metabolism , Cyclopentanes/metabolism , DNA Transposable Elements , Gene Expression Regulation, Plant , Host-Parasite Interactions , Mutation , Oxylipins/metabolism , Phloem/genetics , Phloem/immunology , Phloem/metabolism , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/metabolism , Salicylic Acid/metabolism , Time Factors , Zea mays/immunology , Zea mays/metabolism
19.
Mol Plant Microbe Interact ; 27(1): 7-17, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24047240

ABSTRACT

Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.


Subject(s)
Plant Diseases/immunology , Protein Kinases/metabolism , Pseudomonas syringae/metabolism , Signal Transduction , Solanaceae/physiology , Solanum lycopersicum/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , Gene Library , Genetic Complementation Test , Host-Pathogen Interactions , Luciferases , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Open Reading Frames , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Array Analysis , Protein Kinases/genetics , Protoplasts , Pseudomonas syringae/genetics , Solanaceae/enzymology , Solanaceae/genetics , Solanaceae/immunology
20.
BMC Genomics ; 15: 952, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25366320

ABSTRACT

BACKGROUND: Senegalese sole (Solea senegalensis) and common sole (S. solea) are two economically and evolutionary important flatfish species both in fisheries and aquaculture. Although some genomic resources and tools were recently described in these species, further sequencing efforts are required to establish a complete transcriptome, and to identify new molecular markers. Moreover, the comparative analysis of transcriptomes will be useful to understand flatfish evolution. RESULTS: A comprehensive characterization of the transcriptome for each species was carried out using a large set of Illumina data (more than 1,800 millions reads for each sole species) and 454 reads (more than 5 millions reads only in S. senegalensis), providing coverages ranging from 1,384x to 2,543x. After a de novo assembly, 45,063 and 38,402 different transcripts were obtained, comprising 18,738 and 22,683 full-length cDNAs in S. senegalensis and S. solea, respectively. A reference transcriptome with the longest unique transcripts and putative non-redundant new transcripts was established for each species. A subset of 11,953 reference transcripts was qualified as highly reliable orthologs (>97% identity) between both species. A small subset of putative species-specific, lineage-specific and flatfish-specific transcripts were also identified. Furthermore, transcriptome data permitted the identification of single nucleotide polymorphisms and simple-sequence repeats confirmed by FISH to be used in further genetic and expression studies. Moreover, evidences on the retention of crystallins crybb1, crybb1-like and crybb3 in the two species of soles are also presented. Transcriptome information was applied to the design of a microarray tool in S. senegalensis that was successfully tested and validated by qPCR. Finally, transcriptomic data were hosted and structured at SoleaDB. CONCLUSIONS: Transcriptomes and molecular markers identified in this study represent a valuable source for future genomic studies in these economically important species. Orthology analysis provided new clues regarding sole genome evolution indicating a divergent evolution of crystallins in flatfish. The design of a microarray and establishment of a reference transcriptome will be useful for large-scale gene expression studies. Moreover, the integration of transcriptomic data in the SoleaDB will facilitate the management of genomic information in these important species.


Subject(s)
Computational Biology/methods , Flatfishes/genetics , Molecular Sequence Annotation , Transcriptome , Animals , Crystallins , Databases, Genetic , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/standards , Phylogeny , Reproducibility of Results , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL