Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Mol Sci ; 21(17)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878276

ABSTRACT

Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30-150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.


Subject(s)
Extracellular Vesicles/immunology , Immune Tolerance/immunology , Lectins, C-Type/metabolism , Macrophages/immunology , Mannose-Binding Lectins/metabolism , Neoplasms/immunology , Receptors, Cell Surface/metabolism , Tumor Microenvironment/immunology , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Macrophages/metabolism , Macrophages/pathology , Mannose Receptor , Neoplasms/metabolism , Neoplasms/pathology
2.
J Gen Virol ; 99(12): 1717-1728, 2018 12.
Article in English | MEDLINE | ID: mdl-30311877

ABSTRACT

Intra-host evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) has been shown by viral RNA analysis in subjects who naturally suppress plasma viremia to low levels, known as controllers. However, little is known about the variability of proviral DNA and the inter-relationships among contained systemic viremia, rate of reservoir reseeding and specific major histocompatibility complex (MHC) genotypes, in controllers. Here, we analysed the proviral DNA quasispecies of the env V1-V2 region, in PBMCs and in anatomical compartments of 13 long-term controller monkeys after 3.2 years of infection with simian/human immunodeficiency virus (SHIV)SF162P4cy. A considerable variation in the genetic diversity of proviral quasispecies was present among animals. Seven monkeys exhibited env V1-V2 proviral populations composed of both clusters of identical ancestral sequences and new variants, whereas the other six monkeys displayed relatively high env V1-V2 genetic diversity with a large proportion of diverse novel sequences. Our results demonstrate that in SHIVSF162P4cy-infected monkeys there exists a disparate pattern of intra-host viral diversity and that reseeding of the proviral reservoir occurs in some animals. Moreover, even though no particular association has been observed between MHC haplotypes and the long-term control of infection, a remarkably similar pattern of intra-host viral diversity and divergence was found within animals carrying the M3 haplotype. This suggests that in animals bearing the same MHC haplotype and infected with the same virus, viral diversity follows a similar pattern with similar outcomes and control of infection.


Subject(s)
Gene Products, env/genetics , Genetic Variation , HIV/genetics , Proviruses/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/growth & development , Animals , Genotype , Leukocytes, Mononuclear/virology , Macaca fascicularis , Major Histocompatibility Complex/genetics , Quasispecies
3.
Arch Virol ; 162(9): 2565-2577, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28474225

ABSTRACT

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Exosomes/physiology , HIV-1/physiology , Virus Activation/physiology , Adult , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/therapeutic use , Cell Line , Coculture Techniques , Drug Therapy, Combination , HIV Infections/virology , Humans , Male
4.
BMC Infect Dis ; 16(1): 442, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27549342

ABSTRACT

BACKGROUND: The therapeutic HIV-1 Tat protein vaccine is in advanced clinical development. Tuberculosis, the main AIDS co-infection, is highly endemic in areas where AIDS prevention through vaccination is needed. However, safety and immunogenicity of Tat vaccination in the course of Mycobacterium tuberculosis (Mtb) infection is still unknown and it prevents the possibility to administer the vaccine to Mtb-infected individuals. We addressed the interplay and effects of Tat vaccination on Mtb infection in immunocompetent mice. METHODS: C57BL/6 mice were vaccinated or not with Bacillus Calmette-Guerin (BCG), the current tuberculosis vaccine, and after 5 weeks were infected with Mtb by intravenous route. The Tat protein was injected intradermally at 1, 2 and 4 weeks after Mtb challenge. Eight weeks after Mtb infection, all mice were sacrificed, and both the degree of pathology and immune responses to Mtb and Tat were evaluated. As additional control, some mice were either vaccinated or not with BCG, were not challenged with Mtb, but received the Tat protein. Statistical significances were evaluated by one-way or two-way ANOVA and Tukey's multiple comparisons post-test. RESULTS: In the lungs of Mtb-infected mice, Tat-vaccine did not favour Mtb replication and indeed reduced both area of cellular infiltration and protein levels of Interferon-γ, Chemokine (C-C motif) ligand-4 and Interleukin-1ß, pathological events triggered by Mtb-infection. Moreover, the protection against Mtb infection conferred by BCG remained good after Tat protein treatment. In spleen cells of Mtb-infected mice, Tat vaccination enhanced Mtb-specific Interferon-γ and Interleukin-17 responses, which may have a protective role. Of note, Mtb infection reduced, but did not suppress, the development of anti-Tat antibodies, required for Tat vaccine efficacy and the titer of anti-Tat IgG was potentiated by BCG vaccination in Mtb-free mice. In general, Tat treatment was well tolerated in both Mtb-infected and Mtb-free mice. CONCLUSIONS: Tat protein vaccine, administered in Mtb-infected mice with a protocol resembling that used in the clinical trials, was safe, immunogenic, limited the lung Mtb-associated immunopathology and did not abrogate the protective efficacy of BCG. These data provide preliminary evidence for a safe use of Tat vaccine in people vaccinated with BCG and/or suffering from tuberculosis.


Subject(s)
HIV-1/metabolism , Mycobacterium tuberculosis/pathogenicity , tat Gene Products, Human Immunodeficiency Virus/immunology , Animals , BCG Vaccine/immunology , Bacterial Load , Cells, Cultured , Chemokine CCL4/metabolism , Enzyme-Linked Immunosorbent Assay , Female , HIV Antibodies/blood , HIV-1/immunology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spleen/cytology , Spleen/metabolism , Spleen/microbiology , Vaccination , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
5.
NPJ Vaccines ; 8(1): 83, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268624

ABSTRACT

Induction of effective immunity in the lungs should be a requisite for any vaccine designed to control the severe pathogenic effects generated by respiratory infectious agents. We recently provided evidence that the generation of endogenous extracellular vesicles (EVs) engineered for the incorporation of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 Nucleocapsid (N) protein induced immunity in the lungs of K18-hACE2 transgenic mice, which then can survive the lethal virus infection. However, nothing is known about the ability of the N-specific CD8+ T cell immunity in controlling viral replication in the lungs, a major pathogenic signature of severe disease in humans. To fill the gap, we investigated the immunity generated in the lungs by N-engineered EVs in terms of induction of N-specific effectors and resident memory CD8+ T lymphocytes before and after virus challenge carried out three weeks and three months after boosting. At the same time points, viral replication extents in the lungs were evaluated. Three weeks after the second immunization, virus replication was reduced in mice best responding to vaccination by more than 3-logs compared to the control group. The impaired viral replication matched with a reduced induction of Spike-specific CD8+ T lymphocytes. The antiviral effect appeared similarly strong when the viral challenge was carried out 3 months after boosting, and associated with the persistence of N-specific CD8+ T-resident memory lymphocytes. In view of the quite low mutation rate of the N protein, the present vaccine strategy has the potential to control the replication of all emerging variants.

6.
Vaccines (Basel) ; 11(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37766110

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 enters the host by infecting nasal ciliated cells. Then, the virus can spread towards the oropharyngeal cavity and the pulmonary tissues. The antiviral adaptive immunity is promptly induced in response to the virus's detection, with virus-specific T-lymphocytes appearing before antiviral antibodies. Both the breadth and potency of antiviral CD8+ T-cell immunity have a key role in containing viral spread and disease severity. Current anti-SARS-CoV-2 vaccines do not impede the virus's replication in the upper respiratory tract, and there is consensus on the fact that the best potency of the antiviral immune response in both blood and the upper respiratory tract can be reached upon infection in vaccinees (i.e., breakthrough infection). However, whether the antiviral CD8+ T-cells developing in response to the breakthrough infection in the upper respiratory tract diffuse to the lungs is also still largely unknown. To fill the gap, we checked the CD8+ T-cell immunity elicited after infection of K18-hACE2 transgenic mice both at 3 weeks and 3 months after anti-spike vaccination. Virus-specific CD8+ T-cell immunity was monitored in both blood and the lungs before and after infection. By investigating the de novo generation of the CD8+ T-cells specific for SARS-CoV-2 viral proteins, we found that both membrane (M) and/or nucleocapsid (N)-specific CD8+ T-cells were induced at comparable levels in the blood of both unvaccinated and vaccinated mice. Conversely, N-specific CD8+ T-cells were readily found in the lungs of the control mice but were either rare or absent in those of vaccinated mice. These results support the idea that the hybrid cell immunity developing after asymptomatic/mild breakthrough infection strengthens the antiviral cell immunity in the lungs only marginally, implying that the direct exposition of viral antigens is required for the induction of an efficient antiviral cell immunity in the lungs.

7.
Methods Mol Biol ; 2504: 207-217, 2022.
Article in English | MEDLINE | ID: mdl-35467289

ABSTRACT

Extracellular vesicles (EVs) are membranous particles released by all cells in the external milieu. Depending on their origin, they are given different names: exosomes are nanovesicles that originate from the endosomal compartment, whereas microvesicles bud from plasma membrane. Both contain molecules that are crucial for the onset and spreading of different pathologies, from neurodegenerative diseases to cancer, and are considered promising disease markers. On the other hand, EVs are often used as therapeutic tools, and can be engineered to carry drugs and chemicals. This chapter describes a method to produce EVs, mainly exosomes, containing the green fluorescent protein (GFP) linked to an exosome anchoring protein (Nefmut). This enables counting and tracing of fluorescent EVs by different methods, including conventional flow cytometry.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Cell-Derived Microparticles/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Flow Cytometry
8.
Vaccines (Basel) ; 10(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35891224

ABSTRACT

We propose an innovative anti-SARS-CoV-2 immune strategy based on extracellular vesicles (EVs) inducing an anti-SARS-CoV-2 N CD8+ T cytotoxic lymphocyte (CTL) immune response. We previously reported that the SARS-CoV-2 N protein can be uploaded at high levels in EVs upon fusion with Nefmut, i.e., a biologically inactive HIV-1 Nef mutant incorporating into EVs at quite high levels. Here, we analyze the immunogenic properties in human cells of EVs engineered with SARS-CoV-2 N fused at the C-terminus of either Nefmut or a deletion mutant of Nefmut referred to as NefmutPL. The analysis of in vitro-produced EVs has supported the uploading of N protein when fused with truncated Nefmut. Mice injected with DNA vectors expressed each fusion protein developed robust SARS-CoV-2 N-specific CD8+ T cell immune responses. When ex vivo human dendritic cells were challenged with EVs engineered with either fusion products, the induction of a robust N-specific CTL activity, as evaluated by both CD107a and trogocytosis assays, was observed. Through these data we achieved the proof-of-principle that engineered EVs can be instrumental to elicit anti-SARS-CoV-2 CTL immune response in human cells. This achievement represents a mandatory step towards the upcoming experimentations in pre-clinical models focused on intranasal administration of N-engineered EVs.

9.
Viruses ; 14(2)2022 02 06.
Article in English | MEDLINE | ID: mdl-35215922

ABSTRACT

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with the Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses of 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , Extracellular Vesicles/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , COVID-19/immunology , Female , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Humans , Lung/immunology , Lung/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vaccination
10.
Vaccines (Basel) ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801926

ABSTRACT

Most advanced vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 are designed to induce antibodies against spike (S) protein. Differently, we developed an original strategy to induce CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This is a new vaccination approach based on intramuscular injection of DNA expression vectors coding for a biologically inactive HIV-1 Nef protein (Nefmut) with an unusually high efficiency of incorporation into EVs, even when foreign polypeptides are fused to its C-terminus. Nanovesicles containing Nefmut-fused antigens released by muscle cells can freely circulate into the body and are internalized by antigen-presenting cells. Therefore, EV-associated antigens can be cross-presented to prime antigen-specific CD8+ T-cells. To apply this technology to a strategy of anti-SARS-CoV-2 vaccine, we designed DNA vectors expressing the products of fusion between Nefmut and different viral antigens, namely N- and C-terminal moieties of S (referred to as S1 and S2), M, and N. We provided evidence that all fusion products are efficiently uploaded in EVs. When the respective DNA vectors were injected in mice, a strong antigen-specific CD8+ T cell immunity became detectable in spleens and, most important, in lung airways. Co-injection of DNA vectors expressing the diverse SARS-CoV-2 antigens resulted in additive immune responses in both spleen and lungs. Hence, DNA vectors expressing Nefmut-based fusion proteins can be proposed for new anti-SARS-CoV-2 vaccine strategies.

11.
Cancers (Basel) ; 13(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066801

ABSTRACT

We developed an innovative method to induce antigen-specific CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This approach employs a DNA vector expressing a mutated HIV-1 Nef protein (Nefmut) deprived of the anti-cellular effects typical of the wild-type isoform, meanwhile showing an unusual efficiency of incorporation into EVs. This function persists even when foreign antigens are fused to its C-terminus. In this way, Nefmut traffics large amounts of antigens fused to it into EVs spontaneously released by the recipient cells. We previously provided evidence that mice injected with a DNA vector expressing the Nefmut/HPV16-E7 fusion protein developed an E7-specific CTL immune response as detected 2 weeks after the second immunization. Here, we extended and optimized the anti-HPV16 CD8+ T cell immune response induced by the endogenously engineered EVs, and evaluated the therapeutic antitumor efficacy over time. We found that the co-injection of DNA vectors expressing Nefmut fused with E6 and E7 generated a stronger anti-HPV16 immune response compared to that observed in mice injected with the single vectors. When HPV16-E6 and -E7 co-expressing tumor cells were implanted before immunization, all mice survived at day 44, whereas no mice injected with either void or Nefmut-expressing vectors survived until day 32 after tumor implantation. A substantial part of immunized mice (7 out of 12) cleared the tumor. When the cured mice were re-challenged with a second tumor cell implantation, none of them developed tumors. Both E6- and E7-specific CD8+ T immunities were still detectable at the end of the observation time. We concluded that the immunity elicited by engineered EVs, besides counteracting and curing already developed tumors, was strong enough to guarantee the resistance to additional tumor attacks. These results can be of relevance for the therapy of both metastatic and relapsing tumors.

12.
Vaccines (Basel) ; 9(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921215

ABSTRACT

Intramuscular injection of DNA vectors expressing the extracellular vesicle (EV)-anchoring protein Nefmut fused at its C-terminus to viral and tumor antigens elicit a potent, effective, and anti-tolerogenic CD8+ T cell immunity against the heterologous antigen. The immune response is induced through the production of EVs incorporating Nefmut-derivatives released by muscle cells. In the perspective of a possible translation into the clinic of the Nefmut-based vaccine platform, we aimed at increasing its safety profile by identifying the minimal part of Nefmut retaining the EV-anchoring protein property. We found that a C-terminal deletion of 29-amino acids did not affect the ability of Nefmut to associate with EVs. The EV-anchoring function was also preserved when antigens from both HPV16 (i.e., E6 and E7) and SARS-CoV-2 (i.e., S1 and S2) were fused to its C-terminus. Most important, the Nefmut C-terminal deletion did not affect levels, quality, and diffusion at distal sites of the antigen-specific CD8+ T immunity. We concluded that the C-terminal Nefmut truncation does not influence stability, EV-anchoring, and CD8+ T cell immunogenicity of the fused antigen. Hence, the C-terminal deleted Nefmut may represent a safer alternative to the full-length isoform for vaccines in humans.

13.
Pharmaceutics ; 12(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526949

ABSTRACT

Neurodegenerative diseases are commonly generated by intracellular accumulation of misfolded/aggregated mutated proteins. These abnormal protein aggregates impair the functions of mitochondria and induce oxidative stress, thereby resulting in neuronal cell death. In turn, neuronal damage induces chronic inflammation and neurodegeneration. Thus, reducing/eliminating these abnormal protein aggregates is a priority for any anti-neurodegenerative therapeutic approach. Although several antibodies against mutated neuronal proteins have been already developed, how to efficiently deliver them inside the target cells remains an unmet issue. Extracellular vesicles/exosomes incorporating intrabodies against the pathogenic products would be a tool for innovative therapeutic approaches. In this review/perspective article, we identify and describe the major molecular targets associated with neurodegenerative diseases, as well as the antibodies already developed against them. Finally, we propose a novel targeting strategy based on the endogenous engineering of extracellular vesicles/exosomes constitutively released by cells of the central nervous system.

14.
Vaccines (Basel) ; 8(2)2020 May 22.
Article in English | MEDLINE | ID: mdl-32456079

ABSTRACT

We recently described a cytotoxic CD8+ T lymphocyte (CTL) vaccine platform based on the intramuscular (i.m.) injection of DNA eukaryotic vectors expressing antigens of interest fused at the C-terminus of HIV-1 Nefmut, i.e., a functionally defective mutant that is incorporated at quite high levels into exosomes/extracellular vesicles (EVs). This system has been proven to elicit strong CTL immunity against a plethora of both viral and tumor antigens, as well as inhibit both transplantable and orthotopic tumors in mice. However, a number of open issues remain regarding the underlying mechanism. Here we provide evidence that hindering the uploading into EVs of Nefmut-derived products by removing the Nefmut N-terminal fatty acids leads to a dramatic reduction of the downstream antigen-specific CD8+ T-cell activation after i.m. injection of DNA vectors in mice. This result formally demonstrates that the generation of engineered EVs is part of the mechanism underlying the in vivo induced CD8+ T-cell immunogenicity. Gaining new insights on the EV-based vaccine platform can be relevant in view of its possible translation into the clinic to counteract both chronic and acute infections as well as tumors.

15.
Cytokine Growth Factor Rev ; 51: 40-48, 2020 02.
Article in English | MEDLINE | ID: mdl-31926807

ABSTRACT

HIV-1 infection is efficiently controlled by combination anti-retroviral therapy (cART). However, despite preventing disease progression, cART does not eradicate virus infection which persists in a latent form for an individual's lifetime. The latent reservoir comprises memory CD4+ T lymphocytes, macrophages, and dendritic cells; however, for the most part, the reservoir is generated by virus entry into activated CD4+ T lymphocytes committed to return to a resting state, even though resting CD4+ T lymphocytes can be latently infected as well. The HIV-1 reservoir is not recognized by the immune system, is quite stable, and has the potential to re-seed systemic viremia upon cART interruption. Viral rebound can occur even after a long period of cART interruption. This event is most likely a consequence of the extended half-life of the HIV-1 reservoir, the maintenance of which is not clearly understood. Several recent studies have identified extracellular vesicles (EVs) as a driving force contributing to HIV-1 reservoir preservation. In this review, we discuss recent findings in the field of EV/HIV-1 interplay, and then propose a mechanism through which EVs may contribute to HIV-1 persistence despite cART. Understanding the basis of the HIV-1 reservoir maintenance continues to be a matter of great relevance in view of the limitations of current strategies aimed at HIV-1 eradication.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Cell Communication/immunology , Disease Reservoirs/virology , Extracellular Vesicles/physiology , HIV Infections/immunology , Virus Latency , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/immunology , Extracellular Space , HIV Infections/drug therapy , HIV-1 , Humans , Virus Replication
16.
Curr Drug Targets ; 20(1): 87-95, 2019.
Article in English | MEDLINE | ID: mdl-29779478

ABSTRACT

BACKGROUND: Eukaryotic cells release vesicles of different sizes under both physiological and pathological conditions. On the basis of the respective biogenesis, extracellular vesicles are classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are considered tools for innovative therapeutic interventions, especially when engineered with effector molecules. The delivery functions of exosomes are favored by a number of typical features. These include their small size (i.e., 50-200 nm), the membrane composition tightly similar to that of producer cells, lack of toxicity, stability in serum as well as other biological fluids, and accession to virtually any organ and tissue including central nervous system. However, a number of unresolved questions still affects the possible use of exosomes in therapy. Among these are the exact identification of both in vitro and ex vivo produced vesicles, their large-scale production and purification, the uploading efficiency of therapeutic macromolecules, and the characterization of their pharmacokinetics. OBJECTIVE: Here, we discuss two key aspects to be analyzed before considering exosomes as a tool of delivery for the desired therapeutic molecule, i.e., techniques of engineering, and their in vivo biodistribution/ pharmacokinetics. In addition, an innovative approach aimed at overcoming at least part of the obstacles towards a safe and efficient use of exosomes in therapy will be discussed. CONCLUSION: Several biologic features render exosomes an attractive tool for the delivery of therapeutic molecules. They will surely be a part of innovative therapeutic interventions as soon as few still unmet technical hindrances will be overcome.


Subject(s)
Drug Delivery Systems/methods , Exosomes/genetics , Genetic Engineering/methods , Animals , Biotechnology/methods , Cell Line, Tumor , Humans , Mice , Models, Animal , Tissue Distribution
17.
Cancers (Basel) ; 11(2)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30682811

ABSTRACT

Some human papillomavirus (HPV) genotypes are universally recognized as major etiological agents not only of ano-genital tumors but also of head and neck cancers, which show increasing incidence. The evaluation of current and future therapeutic approaches against HPV-induced tumors is a global health priority, despite an effective prophylactic vaccine against 7 of the 12 genotypes involved in the etiology of tumors being currently available. In this review, we present the main anti-HPV therapeutic approaches in clinical experimentation, with a focus on a novel tumor antigen delivery method using engineered exosomes, that we recently developed. Our system allows the induction of an efficient unrestricted cytotoxic T lymphocyte (CTL) immune response against the HPV16-E7 tumor-associated antigen, with the formation of endogenously engineered exosomes, i.e., nanovesicles spontaneously released by all cell types. Immunogenic exosomes are uploaded with HPV16-E7 due to the fusion with a unique exosome-anchoring protein referred to as Nefmut. Intramuscular injection of a DNA vector expressing the fusion protein generates exosomes sufficiently immunogenic to elicit a potent anti-16E7 CTL immune response. The approach is described here and the advantages over other existing methodologies are reported.

18.
J Mol Med (Berl) ; 97(8): 1139-1153, 2019 08.
Article in English | MEDLINE | ID: mdl-31161312

ABSTRACT

Intrinsic genetic instability of tumor cells leads to continuous production of mutated proteins referred to as tumor-specific neoantigens. Generally, they are recognized as nonself products by the host immune system. However, an effective adaptive response clearing neoantigen-expressing cells is lost in tumor diseases. Most advanced therapeutic strategies aim at inducing neoantigen-specific immune activation through personalized approaches. They include tumor cell exome sequencing, human leukocyte antigen (HLA) typing, synthesis, and injection of peptides/RNA with adjuvants. Here, we propose an innovative method to induce a CD8+ T cytotoxic lymphocyte (CTL) immune response against tumor neoantigens bypassing the steps needed in current therapeutic strategies of personalized vaccination. We assumed that tumor cells can be the most efficient and precise factory of major histocompatibility complex (MHC) class I-associated, tumor neoantigen-derived peptides. Hence, endowing tumor cells with professional antigen-presenting functions would prime CD8+ T lymphocytes towards a response against nonself tumor antigens. To explore this possibility, both adenocarcinoma and melanoma human cells were engineered to express both CD80 and CD86 costimulatory molecules. HLA-matched lymphocytes were then primed through cocultivation with the engineered tumor cells. The generation of tumor-specific CD8+ T lymphocytes was tested through the combined analysis of cell activation markers, formation of immunologic synapses, generation of tumor antigen-specific CD8+ T lymphocytes, and cytotoxic activity. Our data consistently indicate that tumor cells endowed with professional antigen-presenting functions can generate an effective tumor-specific CTL immune response. This finding may open avenues towards the development of innovative antitumor immunotherapies. KEY MESSAGES: We established a novel method to induce antitumor CTLs without a need to identify TAAs and/or tumor neoantigens. This strategy relies on transducing tumor cells with a retroviral vector expressing both CD80 and CD86. In this way, tumor cells prime naïve CD8+ T lymphocytes in a way that CTLs killing the same tumor cells are generated. These findings open the way towards preclinical assays in the perspective to introduce this antitumor immunotherapy strategy in clinic.


Subject(s)
Antigen Presentation , Antigens, Neoplasm , Cancer Vaccines , Cytotoxicity, Immunologic , Dendritic Cells , Neoplasms , T-Lymphocytes, Cytotoxic , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Coculture Techniques , Dendritic Cells/immunology , Dendritic Cells/pathology , HEK293 Cells , Humans , MCF-7 Cells , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
19.
Int J Nanomedicine ; 14: 8755-8768, 2019.
Article in English | MEDLINE | ID: mdl-31806970

ABSTRACT

PURPOSE: Single-chain variable fragments (scFvs) are one of the smallest antigen-binding units having the invaluable advantage to be expressed by a unique short open reading frame (ORF). Despite their reduced size, spontaneous cell entry of scFvs remains inefficient, hence precluding the possibility to target intracellular antigens. Here, we describe an original strategy to deliver scFvs inside target cells through engineered extracellular vesicles (EVs). This approach relies on the properties of a Human Immunodeficiency Virus (HIV)-1 Nef mutant protein referred to as Nefmut. It is a previously characterized Nef allele lacking basically all functions of wt Nef, yet strongly accumulating in the EV lumen also when fused at its C-terminus with a foreign protein. To gain the proof-of-principle for the efficacy of the proposed strategy, the tumor-promoting Human Papilloma Virus (HPV)16-E7 protein was considered as a scFv-specific intracellular target. The oncogenic effect of HPV16-E7 relies on its binding to the tumor suppressor pRb protein leading to a dysregulated cell duplication. Interfering with this interaction means impairing the HPV16-E7-induced cell proliferation. METHODS: The Nefmut gene was fused in frame at its 3'-terminus with the ORF coding for a previously characterized anti-HPV16-E7 scFv. Interaction between the Nefmut-fused anti-HPV16-E7 scFv and the HPV16-E7 protein was tested by both confocal microscope and co-immunoprecipitation analyses on co-transfected cells. The in cis anti-proliferative effect of the Nefmut/anti-HPV16-E7 scFv was assayed by transfecting HPV16-infected cells. The anti-proliferative effect of EVs engineered with Nefmut/anti-HPV16-E7 scFv on HPV16-E7-expressing cells was evaluated in two ways: i) through challenge with purified EVs by a Real-Time Cell Analysis system and ii) in transwell co-cultures by an MTS-based assay. RESULTS: The Nefmut/anti-HPV16-E7 scFv chimeric product is efficiently uploaded in EVs, binds HPV16-E7, and inhibits the proliferation of HPV16-E7-expressing cells. Most important, challenge with cell-free EVs incorporating the Nefmut/anti-HPV16-E7 scFv led to the inhibition of proliferation of HPV16-E7-expressing cells. The proliferation of these cells was hindered also when they were co-cultured in transwells with cells producing EVs uploading Nefmut/anti-HPV16-E7 scFv. CONCLUSION: Our data represent the proof-of-concept for the possibility to target intracellular antigens through EV-mediated delivery of scFvs. This finding could be relevant to design novel methods of intracellular therapeutic interventions.


Subject(s)
Extracellular Vesicles/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/virology , Single-Chain Antibodies/administration & dosage , Bystander Effect , Cell Line , Cell Proliferation , Coculture Techniques , Exosomes/immunology , Exosomes/metabolism , Extracellular Vesicles/genetics , Human papillomavirus 16/immunology , Human papillomavirus 16/pathogenicity , Humans , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/prevention & control , Single-Chain Antibodies/genetics , Transfection , nef Gene Products, Human Immunodeficiency Virus/genetics
20.
Mol Biotechnol ; 60(11): 773-782, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30167966

ABSTRACT

Eukaryotic cells constitutively produce nanovesicles of 50-150 nm of diameter, referred to as exosomes, upon release of the contents of multivesicular bodies (MVBs). We recently characterized a novel, exosome-based way to induce cytotoxic T lymphocyte (CTL) immunization against full-length antigens. It is based on DNA vectors expressing products of fusion between the exosome-anchoring protein Nef mutant (Nefmut) with the antigen of interest. The strong efficiency of Nefmut to accumulate in MVBs results in the production of exosomes incorporating huge amounts of the desired antigen. When translated in animals, the injection of Nefmut-based DNA vectors generates engineered exosomes whose internalization in antigen-presenting cells induces cross-priming and antigen-specific CTL immunity. Here, we describe the molecular strategies we followed to produce DNA vectors aimed at generating immunogenic exosomes potentially useful to elicit a CTL immune response against antigens expressed by the etiologic agents of major chronic viral infections, i.e., HIV-1, HBV, and the novel tumor-associated antigen HOXB7. Unique methods intended to counteract intrinsic RNA instability and nuclear localization of the antigens have been developed. The success we met with the production of these engineered exosomes opens the way towards pre-clinic experimentations devoted to the optimization of new vaccine candidates against major infectious and tumor pathologies.


Subject(s)
Exosomes/genetics , Genetic Vectors/administration & dosage , T-Lymphocytes, Cytotoxic/immunology , Acquired Immunodeficiency Syndrome/drug therapy , Exosomes/immunology , Gene Products, nef/genetics , Genetic Vectors/immunology , HEK293 Cells , Hepatitis B/drug therapy , Humans , Neoplasms/drug therapy , Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL