Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nature ; 611(7937): 818-826, 2022 11.
Article in English | MEDLINE | ID: mdl-36385524

ABSTRACT

Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy1. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1-/-Ctla4+/- mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration2. Here, using single-cell RNA and T cell receptor (TCR) sequencing of cardiac immune infiltrates from Pdcd1-/-Ctla4+/- mice, we identify clonal effector CD8+ T cells as the dominant cell population. Treatment with anti-CD8-depleting, but not anti-CD4-depleting, antibodies improved the survival of Pdcd1-/-Ctla4+/- mice. Adoptive transfer of immune cells from mice with myocarditis induced fatal myocarditis in recipients, which required CD8+ T cells. The cardiac-specific protein α-myosin, which is absent from the thymus3,4, was identified as the cognate antigen source for three major histocompatibility complex class I-restricted TCRs derived from mice with fulminant myocarditis. Peripheral blood T cells from three patients with ICI-MC were expanded by α-myosin peptides. Moreover, these α-myosin-expanded T cells shared TCR clonotypes with diseased heart and skeletal muscle, which indicates that α-myosin may be a clinically important autoantigen in ICI-MC. These studies underscore the crucial role for cytotoxic CD8+ T cells, identify a candidate autoantigen in ICI-MC and yield new insights into the pathogenesis of ICI toxicity.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Myocarditis , Ventricular Myosins , Animals , Mice , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/deficiency , CTLA-4 Antigen/genetics , Immunotherapy/adverse effects , Myocarditis/chemically induced , Myocarditis/etiology , Myocarditis/mortality , Myocarditis/pathology , Ventricular Myosins/immunology
2.
Nat Chem Biol ; 18(4): 360-367, 2022 04.
Article in English | MEDLINE | ID: mdl-34857958

ABSTRACT

Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.


Subject(s)
Leukemia , Neoplasms , Adenosine Triphosphate , Humans , Leukemia/drug therapy , Macrolides , Mitochondrial Proton-Translocating ATPases/chemistry , Neoplasms/drug therapy
3.
Am J Hematol ; 95(9): 1006-1014, 2020 09.
Article in English | MEDLINE | ID: mdl-32390196

ABSTRACT

For patients with high risk myeloid disease, allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative therapy. Unfortunately, many of these patients relapse after HCT and have a limited survival. The recent approval of venetoclax, an orally bioavailable BCL-2 inhibitor, resulted in significant responses in treatment naïve acute myeloid leukemia (AML), and off-label use in the relapsed/refractory setting is increasing. We report the outcomes of 21 patients who underwent allogeneic HCT for myeloid disease, relapsed with AML, and were treated with venetoclax. Several patients had poor risk features including antecedent hematologic malignancy (6/21), complex karyotype (6/21), and TP53 mutations (5/21). The median age was 64.5 years and time from HCT to relapse was 5.7 months (range: 0.9 to 44.9 months). Of the 19 patients who were assessed for response, there were meaningful treatment responses seen in eight patients: five CR, three CRi, zero PR, for an ORR of 42.1%. Treatment effect was seen in six additional patients, including four in the morphologic leukemia-free state. Nine patients maintained their response for ≥3 months and eight were receiving therapy at data cut. Post-HCT AML relapse has an exceedingly poor outcome, and venetoclax-based therapy is a potent therapy option that should be studied prospectively in this setting.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Salvage Therapy , Sulfonamides/administration & dosage , Adult , Aged , Allografts , Disease-Free Survival , Female , Humans , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Survival Rate
4.
Oncologist ; 24(5): 584-588, 2019 05.
Article in English | MEDLINE | ID: mdl-30819785

ABSTRACT

Immune checkpoint inhibitors have improved outcomes for patients with numerous hematological and solid cancers. Hematologic toxicities have been described, but the spectrum, timing, and clinical presentation of these complications are not well understood. We used the World Health Organization's pharmacovigilance database of individual-case-safety-reports (ICSRs) of adverse drug reactions, VigiBase, to identify cases of hematologic toxicities complicating immune checkpoint inhibitor therapy. We identified 168 ICSRs of immune thrombocytopenic purpura (ITP), hemolytic anemia (HA), hemophagocytic lymphohistiocytosis, aplastic anemia, and pure red cell aplasia in 164 ICSRs. ITP (n = 68) and HA (n = 57) were the most common of these toxicities and occurred concomitantly in four patients. These events occurred early on treatment (median 40 days) and were associated with fatal outcome in 12% of cases. Ipilimumab-based therapy (monotherapy or combination with anti-programmed death-1 [PD-1]) was associated with earlier onset (median 23 vs. 47.5 days, p = .006) than anti-PD-1/programmed death ligand-1 monotherapy. Reporting of hematologic toxicities has increased over the past 2 years (98 cases between January 2017 and March 2018 vs. 70 cases before 2017), possibly because of increased use of checkpoint inhibitors and improved recognition of toxicities. Future studies should evaluate incidence of hematologic toxicities, elucidate risk factors, and determine the most effective treatment algorithms. KEY POINTS: Immune-mediated hematologic toxicities are a potential side effect of immune checkpoint inhibitors (ICIs).Providers should monitor complete blood counts during treatment with ICIs.Corticosteroids are the mainstay of treatment for immune-mediated hematologic toxicities.Further research is needed to define patient-specific risk factors and optimal management strategies for hematologic toxicities.


Subject(s)
Adverse Drug Reaction Reporting Systems/statistics & numerical data , Antineoplastic Agents, Immunological/adverse effects , Hematologic Diseases/epidemiology , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Databases, Factual/statistics & numerical data , Female , Hematologic Diseases/chemically induced , Hematologic Diseases/diagnosis , Hematologic Diseases/therapy , Humans , Incidence , Ipilimumab/adverse effects , Male , Middle Aged , Neoplasms/immunology , Pharmacovigilance , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Risk Factors
6.
Methods ; 82: 55-63, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25979346

ABSTRACT

The flood of high-dimensional data resulting from mass cytometry experiments that measure more than 40 features of individual cells has stimulated creation of new single cell computational biology tools. These tools draw on advances in the field of machine learning to capture multi-parametric relationships and reveal cells that are easily overlooked in traditional analysis. Here, we introduce a workflow for high dimensional mass cytometry data that emphasizes unsupervised approaches and visualizes data in both single cell and population level views. This workflow includes three central components that are common across mass cytometry analysis approaches: (1) distinguishing initial populations, (2) revealing cell subsets, and (3) characterizing subset features. In the implementation described here, viSNE, SPADE, and heatmaps were used sequentially to comprehensively characterize and compare healthy and malignant human tissue samples. The use of multiple methods helps provide a comprehensive view of results, and the largely unsupervised workflow facilitates automation and helps researchers avoid missing cell populations with unusual or unexpected phenotypes. Together, these methods develop a framework for future machine learning of cell identity.


Subject(s)
Flow Cytometry/methods , Machine Learning , Computational Biology , Humans
7.
Leuk Lymphoma ; : 1-8, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538632

ABSTRACT

Olutasidenib, a potent, selective, oral, mutant isocitrate dehydrogenase 1 (mIDH1) inhibitor, is FDA-approved for relapsed/refractory (R/R) acute myeloid leukemia (AML). Here we report efficacy and safety of olutasidenib in 18 patients with mIDH1 AML who were relapsed (10), refractory (6) or had complete remission with incomplete hematologic recovery (CRi; 2) to a venetoclax combination. Of the 16 patients who were R/R, 4 (25%) achieved complete remission (CR), one (6.3%) achieved CR with partial hematologic recovery (CRh), and 7 (43.8%) achieved a composite complete remission (CRc). Median time to CRc was 1.9 months (range 1-2.8). As of data cutoff (18 June 2021), median duration of CRc was not reached (range, 1.2-NR, ongoing at 30.4+ months). Both patients with CRi at study entry achieved a CR. Safety was consistent with the overall profile of olutasidenib. Olutasidenib offers a valuable treatment option for patients with mIDH1 AML previously treated with venetoclax.

8.
Blood Cancer J ; 14(1): 6, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225345

ABSTRACT

Clonal hematopoiesis (CH) can be caused by either single gene mutations (eg point mutations in JAK2 causing CHIP) or mosaic chromosomal alterations (e.g., loss of heterozygosity at chromosome 9p). CH is associated with a significantly increased risk of hematologic malignancies. However, the absolute rate of transformation on an annualized basis is low. Improved prognostication of transformation risk is urgently needed for routine clinical practice. We hypothesized that the co-occurrence of CHIP and mCAs at the same locus (e.g., transforming a heterozygous JAK2 CHIP mutation into a homozygous mutation through concomitant loss of heterozygosity at chromosome 9) might have important prognostic implications for malignancy transformation risk. We tested this hypothesis using our discovery cohort, the UK Biobank (n = 451,180), and subsequently validated it in the BioVU cohort (n = 91,335). We find that individuals with a concurrent somatic mutation and mCA were at significantly increased risk of hematologic malignancy (for example, In BioVU cohort incidence of hematologic malignancies is higher in individuals with co-occurring JAK2 V617F and 9p CN-LOH; HR = 54.76, 95% CI = 33.92-88.41, P < 0.001 vs. JAK2 V617F alone; HR = 44.05, 95% CI = 35.06-55.35, P < 0.001). Currently, the 'zygosity' of the CHIP mutation is not routinely reported in clinical assays or considered in prognosticating CHIP transformation risk. Based on these observations, we propose that clinical reports should include 'zygosity' status of CHIP mutations and that future prognostication systems should take mutation 'zygosity' into account.


Subject(s)
Clonal Hematopoiesis , Hematologic Neoplasms , Humans , Mutation , Point Mutation , Chromosome Aberrations , Hematologic Neoplasms/genetics
9.
Blood Adv ; 8(13): 3453-3463, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38608257

ABSTRACT

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon leading to an increased risk of both hematologic malignancy and nonmalignant organ dysfunction. Increasingly available genetic testing has made the incidental discovery of CH clinically common yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE (clonal hematopoiesis and inflammation in the vasculature) registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and refine taxonomy and standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this prospective registry recapitulate the molecular epidemiology of CH from biobank-scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. Blood counts across all hematopoietic lineages trended lower in patients with CH. In addition, patients with CH had higher rates of end organ dysfunction, in particular chronic kidney disease. Among patients with CH, variant allele frequency was independently associated with the presence of cytopenias and progression to hematologic malignancy, whereas other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias and hematologic malignancy progression, supporting a recently published CH risk score. Surprisingly, ∼30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having clonal hematopoiesis of indeterminate potential, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions are underway and will be critical to understanding how to thoughtfully care for this patient population.


Subject(s)
Clonal Hematopoiesis , Inflammation , Humans , Prospective Studies , Female , Male , Middle Aged , Aged , Registries , Hematologic Neoplasms/genetics , Mutation , Adult
10.
Hemasphere ; 8(5): e64, 2024 May.
Article in English | MEDLINE | ID: mdl-38756352

ABSTRACT

Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.

11.
Blood Cancer J ; 13(1): 5, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599826

ABSTRACT

Clonal hematopoiesis (CH) is the age-related expansion of hematopoietic stem cell clones caused by the acquisition of somatic point mutations or mosaic chromosomal alterations (mCAs). Clonal hematopoiesis caused by somatic mutations has primarily been associated with increased risk of myeloid malignancies, while mCAs have been associated with increased risk of lymphoid malignancies. A recent study by Niroula et al. challenged this paradigm by finding a distinct subset of somatic mutations and mCAs that are associated with increased risk of lymphoid malignancy. CH driven by these mutations is termed lymphoid clonal hematopoiesis (L-CH). Unlike myeloid clonal hematopoiesis (M-CH), L-CH has the potential to originate at both stem cells and partially or fully differentiated progeny stages of maturation. In this review, we explore the definition of L-CH in the context of lymphocyte maturation and lymphoid malignancy precursor disorders, the evidence for L-CH in late-onset autoimmunity and immunodeficiency, and the development of therapy-related L-CH following chemotherapy or hematopoietic stem cell transplantation.


Subject(s)
Hematologic Diseases , Myeloproliferative Disorders , Neoplasms , Humans , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , Myeloproliferative Disorders/pathology , Mutation
12.
Lancet Haematol ; 10(1): e46-e58, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370742

ABSTRACT

BACKGROUND: Olutasidenib (FT-2102) is a potent, selective, oral, small-molecule inhibitor of mutant isocitrate dehydrogenase 1 (IDH1). The aims for phase 1 of this phase 1/2 study were to assess the safety, pharmacokinetics, pharmacodynamics, and clinical activity of olutasidenib, as monotherapy or in combination with azacitidine, in patients with acute myeloid leukaemia or myelodysplastic syndrome, harbouring mutant IDH1. METHODS: In this phase 1/2, multicentre, open-label clinical trial, we enrolled patients aged 18 years or older with acute myeloid leukaemia or intermediate, high, or very high risk myelodysplastic syndrome harbouring mutant IDH1 at 18 study sites in the USA, Australia, France, and Spain. Other key eligibility criteria included Eastern Cooperative Oncology Group performance status 0-2 with adequate liver and renal function. The primary outcomes were dose-limiting toxicities and the maximum tolerated dose, maximum evaluated dose, and the recommended phase 2 dose of olutasidenib. Olutasidenib was administered orally in doses of 150 mg once daily, 150 mg twice per day, and 300 mg once daily. Azacitidine (75 mg/m2) was administered subcutaneously or intravenously daily for 7 days on, 21 days off. The study was ongoing at the data cutoff (Oct 2, 2019) and is registered with ClinicalTrials.gov, NCT02719574. FINDINGS: Patients were enrolled between Aug 8, 2016, and Nov 14, 2018. 78 patients received olutasidenib as monotherapy (n=32) or in combination with azacitidine (n=46). The median follow-up was 8·3 months (IQR 3·1-13·3) for monotherapy and 10·1 months (4·2-15·3) for combination therapy. 16 (50%) of 32 patients in the monotherapy group and 24 (52%) of 46 patients in the combination therapy group were women. Most patients were White (26 [81%] for monotherapy and 31 [67%] for combination therapy). No dose-limiting toxicities were reported in the dose-escalation cohorts and 150 mg twice per day was declared the recommended phase 2 dose on the basis of safety, pharmacokinetics and pharmacodynamics, and clinical activity. The most common (≥20%) grade 3-4 treatment-emergent adverse events with monotherapy were thrombocytopenia (nine [28%] of 32 patients), febrile neutropenia (seven [22%] of 32), and anaemia (seven [22%] of 32); and with combination therapy were thrombocytopenia (19 [41%] of 46), febrile neutropenia (13 [28%] of 46), neutropenia (13 [28%] of 46), and anaemia (nine [20%] of 46). 11 (34%) of 32 patients in the monotherapy group and nine (20%) of 46 patients in the combination therapy group died (most commonly from disease progression [three (9%) of 32 and four (9%) of 46]). No deaths were considered study-drug related. For patients with relapsed or refractory acute myeloid leukaemia, 41% (95% CI 21-64; nine of 22) receiving monotherapy and 46% (27-67; 12 of 26) receiving combination therapy had an overall response. For treatment-naive patients with acute myeloid leukaemia, 25% (1-81; one of four) receiving monotherapy and 77% (46-95; ten of 13) receiving combination therapy had an overall response. INTERPRETATION: Olutasidenib, with or without azacitidine, was well tolerated and showed meaningful clinical activity in patients with IDH1-mutated acute myeloid leukaemia. The results of this phase 1 study provide rationale for the continued evaluation of olutasidenib in multiple patient populations with myeloid malignancies. FUNDING: Forma Therapeutics.


Subject(s)
Febrile Neutropenia , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Thrombocytopenia , Humans , Female , Male , Azacitidine/adverse effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Febrile Neutropenia/drug therapy , Isocitrate Dehydrogenase/genetics
13.
Clin Cancer Res ; 29(13): 2375-2384, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37036505

ABSTRACT

PURPOSE: Treatment options are limited beyond JAK inhibitors for patients with primary myelofibrosis (MF) or secondary MF. Preclinical studies have revealed that PI3Kδ inhibition cooperates with ruxolitinib, a JAK1/2 inhibitor, to reduce proliferation and induce apoptosis of JAK2V617F-mutant cell lines. PATIENTS AND METHODS: In a phase I dose-escalation and -expansion study, we evaluated the safety and efficacy of a selective PI3Kδ inhibitor, umbralisib, in combination with ruxolitinib in patients with MF who had a suboptimal response or lost response to ruxolitinib. Enrolled subjects were required to be on a stable dose of ruxolitinib for ≥8 weeks and continue that MTD at study enrollment. The recommended dose of umbralisib in combination with ruxolitinib was determined using a modified 3+3 dose-escalation design. Safety, pharmacokinetics, and efficacy outcomes were evaluated, and spleen size was measured with a novel automated digital atlas. RESULTS: Thirty-seven patients with MF (median age, 67 years) with prior exposure to ruxolitinib were enrolled. A total of 2 patients treated with 800 mg umbralisib experienced reversible grade 3 asymptomatic pancreatic enzyme elevation, but no dose-limiting toxicities were seen at lower umbralisib doses. Two patients (5%) achieved a durable complete response, and 12 patients (32%) met the International Working Group-Myeloproliferative Neoplasms Research and Treatment response criteria of clinical improvement. With a median follow-up of 50.3 months for censored patients, overall survival was greater than 70% after 3 years of follow-up. CONCLUSIONS: Adding umbralisib to ruxolitinib in patients was well tolerated and may resensitize patients with MF to ruxolitinib without unacceptable rates of adverse events seen with earlier generation PI3Kδ inhibitors. Randomized trials testing umbralisib in the treatment of MF should be pursued.


Subject(s)
Janus Kinase Inhibitors , Primary Myelofibrosis , Humans , Aged , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/metabolism , Phosphatidylinositol 3-Kinases , Pyrimidines/therapeutic use , Nitriles/therapeutic use , Janus Kinase Inhibitors/therapeutic use
14.
Clin Cancer Res ; 28(14): 2986-2988, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35587792

ABSTRACT

The unexpected higher level of IFNγ in a subset of patients with acute myeloid leukemia (AML; IFNγhigh) upregulates immunosuppressive genes in mesenchymal stem cells (MSC) and expands regulatory T cells through IDO1 overexpression. IDO1 and IFNG gene expression was positively correlated and required both leukemia cells and MSCs, as IFNγhigh cells were not able to induce Tregs alone. See related article by Corradi et al., p. 3141.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Bone Marrow/metabolism , Bone Marrow Cells , Cell Proliferation , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/genetics
15.
Leukemia ; 36(4): 923-934, 2022 04.
Article in English | MEDLINE | ID: mdl-34857894

ABSTRACT

Mutations in isocitrate dehydrogenase 2 (IDH2) have been noted to impact cellular differentiation in addition to DNA and histone methylation. However, little is known about the impact of IDH2 mutations on intracellular signaling. Using an isogenic cell line model, we investigated both differentiation and signaling responses in IDH2 mutant cells and show augmented responses to inflammatory immune ligands. Using phospho-specific flow and mass cytometry, we demonstrate IDH2 mutant cells were significantly more sensitive to IL-1ß at multiple downstream readouts. Further, bulk RNA sequencing confirmed increases in cytokine-related signaling pathways and NF-κB target genes. Single-cell RNA sequencing of unstimulated and stimulated cells confirmed altered IL-1ß transcriptional responses in the IDH2 mutant cells. Targeted inhibition of the IKK complex reduced IL-1ß responses and induced cell death in primary IDH-mutated leukemia samples. Together, these results confirm altered IL-1ß signaling in IDH2 mutant cells and identify this pathway as a potential therapeutic target.


Subject(s)
Interleukin-1beta , Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Cell Differentiation , Humans , Interleukin-1beta/metabolism , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation
16.
Blood Cancer Discov ; 3(4): 316-329, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35522837

ABSTRACT

Clonal evolution in myelodysplastic syndrome (MDS) can result in clinical progression and secondary acute myeloid leukemia (sAML). To dissect changes in clonal architecture associated with this progression, we performed single-cell genotyping of paired MDS and sAML samples from 18 patients. Analysis of single-cell genotypes revealed patient-specific clonal evolution and enabled the assessment of single-cell mutational cooccurrence. We discovered that changes in clonal architecture proceed via distinct patterns, classified as static or dynamic, with dynamic clonal architectures having a more proliferative phenotype by blast count fold change. Proteogenomic analysis of a subset of patients confirmed that pathogenic mutations were primarily confined to primitive and mature myeloid cells, though we also identify rare but present mutations in lymphocyte subsets. Single-cell transcriptomic analysis of paired sample sets further identified gene sets and signaling pathways involved in two cases of progression. Together, these data define serial changes in the MDS clonal landscape with clinical and therapeutic implications. SIGNIFICANCE: Precise clonal trajectories in MDS progression are made possible by single-cell genomic sequencing. Here we use this technology to uncover the patterns of clonal architecture and clonal evolution that drive the transformation to secondary AML. We further define the phenotypic and transcriptional changes of disease progression at the single-cell level. See related article by Menssen et al., p. 330 (31). See related commentary by Romine and van Galen, p. 270. This article is highlighted in the In This Issue feature, p. 265.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neoplasms, Second Primary , Clonal Evolution/genetics , Clone Cells/pathology , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics
17.
Immunohorizons ; 6(12): 837-850, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36547387

ABSTRACT

Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.


Subject(s)
ATP Citrate (pro-S)-Lyase , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Myelopoiesis , Animals , Mice , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , ATP Citrate (pro-S)-Lyase/deficiency , ATP Citrate (pro-S)-Lyase/genetics , Chromatin/metabolism , Myelopoiesis/genetics
18.
Exp Hematol ; 97: 57-65.e5, 2021 05.
Article in English | MEDLINE | ID: mdl-33617893

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/myeloproliferative neoplasm overlap syndrome characterized by monocytic proliferation in the presence of dysplastic bone marrow changes, inflammatory symptoms, and propensity for transformation to acute myeloid leukemia (AML), with a poor prognosis and limited treatment options. Unlike the α and ß isoforms, the phosphatidylinositol-3-kinase (PI3K)-δ signaling protein is predominantly expressed by hematopoietic cells and therefore has garnered interest as a potential target for the treatment of lymphomas and leukemias. We revealed a pattern of increased PIK3CD:PIK3CA ratio in monocytic M5 AML patients and cell lines, and this ratio correlated with responsiveness to pharmacological PI3K-δ inhibition in vitro. Because CMML is a disease defined by monocytic clonal proliferation, we tested the PI3K-δ inhibitor umbralisib as a single agent and in combination with the JAK1/2 inhibitor ruxolitinib, in CMML. Our ex vivo experiments with primary CMML patient samples revealed synergistic inhibition of viability and clonogenicity with this combination. Phospho-specific flow cytometry revealed that dual inhibition had the unique ability to decrease STAT5, ERK, AKT, and S6 phosphorylation simultaneously, which offers a mechanistic hypothesis for the enhanced efficacy of the combination treatment. These preclinical data indicate promising activity by co-inhibition of PI3K-δ and JAK1/2 and support the use of ruxolitinib + umbralisib combination therapy in CMML under active clinical investigation.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/pharmacology , Leukemia, Myelomonocytic, Chronic/drug therapy , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Class I Phosphatidylinositol 3-Kinases/metabolism , Drug Synergism , Humans , Leukemia, Myelomonocytic, Chronic/enzymology , Molecular Targeted Therapy , Nitriles , Pyrimidines
19.
Target Oncol ; 16(5): 663-674, 2021 09.
Article in English | MEDLINE | ID: mdl-34324169

ABSTRACT

BACKGROUND: All-trans retinoic acid (ATRA), a derivate of vitamin A, has been successfully used as a therapy to induce differentiation in M3 acute promyelocytic leukemia (APML), and has led to marked improvement in outcomes. Previously, attempts to use ATRA in non-APML in the clinic, however, have been underwhelming, likely due to persistent signaling through other oncogenic drivers. Dysregulated JAK/STAT signaling is known to drive several hematologic malignancies, and targeting JAK1 and JAK2 with the JAK1/JAK2 inhibitor ruxolitinib has led to improvement in survival in primary myelofibrosis and alleviation of vasomotor symptoms and splenomegaly in polycythemia vera and myelofibrosis. OBJECTIVE: While dose-dependent anemia and thrombocytopenia limit the use of JAK2 inhibition, selectively targeting JAK1 has been explored as a means to suppress inflammation and STAT-associated pathologies related to neoplastogenesis. The objective of this study is to employ JAK1 inhibition (JAK1i) in the presence of ATRA as a potential therapy in non-M3 acute myeloid leukemia (AML). METHODS: Efficacy of JAK1i using INCB52793 was assessed by changes in cell cycle and apoptosis in treated AML cell lines. Transcriptomic and proteomic analysis evaluated effects of JAK1i. Synergy between JAK1i+ ATRA was assessed in cell lines in vitro while efficacy in vivo was assessed by tumor reduction in MV-4-11 cell line-derived xenografts. RESULTS: Here we describe novel synergistic activity between JAK1i inhibition and ATRA in non-M3 leukemia. Transcriptomic and proteomic analysis confirmed structural and functional changes related to maturation while in vivo combinatory studies revealed significant decreases in leukemic expansion. CONCLUSIONS: JAK1i+ ATRA lead to decreases in cell cycle followed by myeloid differentiation and cell death in human leukemias. These findings highlight potential uses of ATRA-based differentiation therapy of non-M3 human leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia , Cell Differentiation , Humans , Janus Kinase 1 , Proteomics , STAT5 Transcription Factor , Tretinoin/pharmacology
20.
Oncogene ; 39(18): 3611-3619, 2020 04.
Article in English | MEDLINE | ID: mdl-32127646

ABSTRACT

Acute myeloid leukemia (AML) is a systemic, heterogeneous hematologic malignancy with poor overall survival. While some malignancies have seen improvements in clinical outcomes with immunotherapy, success of these agents in AML remains elusive. Despite limited progress, stem cell transplantation and donor lymphocyte infusions show that modulation of the immune system can improve overall survival of AML patients. Understanding the causes of immune evasion and disease progression will identify potential immune-mediated targets in AML. This review explores immunosuppressive mechanisms that alter T-cell-mediated immunity in AML.


Subject(s)
Immunity, Cellular , Immunotherapy , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Humans , Immunosuppressive Agents/therapeutic use , Leukemia, Myeloid, Acute/immunology , T-Lymphocytes/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL