Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mol Cell ; 83(22): 4174-4189.e7, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37949067

ABSTRACT

Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , Chikungunya virus/genetics , Cell Line , Chikungunya Fever/metabolism , RNA Helicases/metabolism , Virus Replication/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Antiviral Agents/pharmacology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism
2.
Mol Cell ; 82(19): 3729-3744.e10, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36167073

ABSTRACT

Arthropod-borne viruses, including the alphavirus chikungunya virus (CHIKV), cause acute disease in millions of people and utilize potent mechanisms to antagonize and circumvent innate immune pathways including the type I interferon (IFN) pathway. In response, hosts have evolved antiviral counterdefense strategies that remain incompletely understood. Recent studies have found that long noncoding RNAs (lncRNAs) regulate classical innate immune pathways; how lncRNAs contribute to additional antiviral counterdefenses remains unclear. Using high-throughput genetic screening, we identified a cytoplasmic antiviral lncRNA that we named antiviral lncRNA prohibiting human alphaviruses (ALPHA), which is transcriptionally induced by alphaviruses and functions independently of IFN to inhibit the replication of CHIKV and its closest relative, O'nyong'nyong virus (ONNV), but not other viruses. Furthermore, we showed that ALPHA interacts with CHIKV genomic RNA and restrains viral RNA replication. Together, our findings reveal that ALPHA and potentially other lncRNAs can mediate non-canonical antiviral immune responses against specific viruses.


Subject(s)
Chikungunya virus , Interferon Type I , RNA, Long Noncoding , Antiviral Agents/pharmacology , Chikungunya virus/genetics , Humans , Immunity, Innate/genetics , Interferon Type I/genetics , RNA, Long Noncoding/genetics , RNA, Viral/genetics , Virus Replication/genetics
3.
Proc Natl Acad Sci U S A ; 119(25): e2206046119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35704758

ABSTRACT

Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.


Subject(s)
Cell Nucleus , Nuclear Speckles , Protein Kinases , RNA Splicing , Active Transport, Cell Nucleus , Cell Nucleus/enzymology , HeLa Cells , Humans , Protein Kinases/metabolism , RNA/metabolism , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors/genetics
4.
PLoS Pathog ; 18(11): e1010930, 2022 11.
Article in English | MEDLINE | ID: mdl-36318584

ABSTRACT

The antiviral endoribonuclease, RNase L, is activated by the mammalian innate immune response to destroy host and viral RNA to ultimately reduce viral gene expression. Herein, we show that RNase L and RNase L-mediated mRNA decay are primarily localized to the cytoplasm. Consequently, RNA-binding proteins (RBPs) translocate from the cytoplasm to the nucleus upon RNase L activation due to the presence of intact nuclear RNA. The re-localization of RBPs to the nucleus coincides with global alterations to RNA processing in the nucleus. While affecting many host mRNAs, these alterations are pronounced in mRNAs encoding type I and type III interferons and correlate with their retention in the nucleus and reduction in interferon protein production. Similar RNA processing defects also occur during infection with either dengue virus or SARS-CoV-2 when RNase L is activated. These findings reveal that the distribution of RBPs between the nucleus and cytosol is dictated by the availability of RNA in each compartment. Thus, viral infections that trigger RNase L-mediated cytoplasmic RNA in the cytoplasm also alter RNA processing in the nucleus, resulting in an ingenious multi-step immune block to protein biogenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , COVID-19/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Cytoplasm/metabolism , Mammals
5.
RNA ; 25(5): 521-538, 2019 05.
Article in English | MEDLINE | ID: mdl-30733326

ABSTRACT

It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.


Subject(s)
Protein Biosynthesis , Protein Processing, Post-Translational , RNA, Messenger/genetics , RNA, Transfer/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Animals , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Bacteria/metabolism , Base Sequence , Genetic Heterogeneity , Mammals/genetics , Mammals/metabolism , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Ribosomal Proteins/genetics , Ribosomes/classification , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
6.
Differentiation ; 88(2-3): 51-69, 2014.
Article in English | MEDLINE | ID: mdl-25449352

ABSTRACT

Potential trans-generational influence of diethylstilbestrol (DES) exposure emerged with reports of effects in grandchildren of DES-treated pregnant women and of reproductive tract tumors in offspring of mice exposed in utero to DES. Accordingly, we examined the trans-generational influence of DES on development of external genitalia (ExG) and compared effects of in utero DES exposure in CD-1 and C57BL/6 mice injected with oil or DES every other day from gestational days 12 to 18. Mice were examined at birth, and on 5-120 days postnatal to evaluate ExG malformations. Of 23 adult (>60 days) prenatally DES-exposed males, features indicative of urethral meatal hypospadias (see text for definitions) ranged from 18% to 100% in prenatally DES-exposed CD-1 males and 31% to 100% in prenatally DES-exposed C57BL/6 males. Thus, the strains differed only slightly in the incidence of male urethral hypospadias. Ninety-one percent of DES-exposed CD-1 females and 100% of DES-exposed C57BL/6 females had urethral-vaginal fistula. All DES-exposed CD-1 and C57BL/6 females lacked an os clitoris. None of the prenatally oil-treated CD-1 and C57BL/6 male and female mice had ExG malformations. For the second-generation study, 10 adult CD-1 males and females, from oil- and DES-exposed groups, respectively, were paired with untreated CD-1 mice for 30 days, and their offspring evaluated for ExG malformations. None of the F1 DES-treated females were fertile. Nine of 10 prenatally DES-exposed CD-1 males sired offspring with untreated females, producing 55 male and 42 female pups. Of the F2 DES-lineage adult males, 20% had exposed urethral flaps, a criterion of urethral meatal hypospadias. Five of 42 (11.9%) F2 DES lineage females had urethral-vaginal fistula. In contrast, all F2 oil-lineage males and all oil-lineage females were normal. Thus, prenatal DES exposure induces malformations of ExG in both sexes and strains of mice, and certain malformations are transmitted to the second-generation.


Subject(s)
Abnormalities, Drug-Induced/pathology , Diethylstilbestrol/toxicity , Genitalia, Female/abnormalities , Genitalia, Male/abnormalities , Prenatal Exposure Delayed Effects , Abnormalities, Drug-Induced/etiology , Abnormalities, Drug-Induced/physiopathology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Pregnancy
7.
Differentiation ; 88(2-3): 70-83, 2014.
Article in English | MEDLINE | ID: mdl-25449353

ABSTRACT

The effect of neonatal exposure to diethylstilbestrol (DES), a potent synthetic estrogen, was examined to evaluate whether the CD-1 (estrogen insensitive, outbred) and C57 (estrogen sensitive, inbred) mouse strains differ in their response to estrogen disruption of male ExG differentiation. CD-1 and C57BL/6 litters were injected with sesame oil or DES (200 ng/g/5 µl in sesame oil vehicle) every other day from birth to day 10. Animals were sacrificed at the following time points: birth, 5, 10 and 60 days postnatal. Neonatally DES-treated mice from both strains had many ExG abnormalities that included the following: (a) severe truncation of the prepuce and glans penis, (b) an abnormal urethral meatus, (c) ventral tethering of the penis, (d) reduced os penis length and glans width, (e) impaired differentiation of cartilage, (f) absence of urethral flaps, and (g) impaired differentiation of erectile bodies. Adverse effects of DES correlated with the expression of estrogen receptors within the affected tissues. While the effects of DES were similar in the more estrogen-sensitive C57BL/6 mice versus the less estrogen-sensitive CD-1 mice, the severity of DES effects was consistently greater in C57BL/6 mice. We suggest that many of the effects of DES, including the induction of hypospadias, are due to impaired growth and tissue fusion events during development.


Subject(s)
Abnormalities, Drug-Induced/pathology , Diethylstilbestrol/toxicity , Estrogens/metabolism , Genitalia, Male/abnormalities , Receptors, Estrogen/genetics , Abnormalities, Drug-Induced/etiology , Abnormalities, Drug-Induced/metabolism , Animals , Female , Genitalia, Male/drug effects , Genitalia, Male/metabolism , Male , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Estrogen/metabolism , Species Specificity
8.
Sci Rep ; 14(1): 10987, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745101

ABSTRACT

The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.


Subject(s)
3' Untranslated Regions , Lymphocyte Activation , Polyadenylation , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation , Signal Transduction , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , CD28 Antigens/metabolism , CD28 Antigens/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
9.
Differentiation ; 84(3): 269-79, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22925506

ABSTRACT

The objective of this study was to perform a comprehensive morphologic analysis of developing mouse external genitalia (ExG) and to determine specific sexual differentiation features that are responsive to androgens or estrogens. To eliminate sex steroid signaling postnatally, male and female mice were gonadectomized on the day of birth, and then injected intraperitoneally every other day with DES (200 ng/g), DHT (1 µg/g), or oil. On day-10 postnatal male and female ExG were dissected, fixed, embedded, serially sectioned and analyzed. We identified 10 sexually dimorphic anatomical features indicative of normal penile and clitoral differentiation in intact mice. Several (but not all) penile features were impaired or abolished as a result of neonatal castration. Those penile features remaining after neonatal castration were completely abolished with attendant clitoral development in androgen receptor (AR) mutant male mice (X(Tfm)/Y and X/Y AR-null) in which AR signaling is absent both pre- and postnatally. Administration of DHT to neonatally castrated males restored development of all 10 masculine features to almost normal levels. Neonatal ovariectomy of female mice had little effect on clitoral development, whereas treatment of ovariectomized female mice with DHT induced partial masculinization of the clitoris. Administration of DES to neonatally gonadectomized male and female mice elicited a spectrum of development abnormalities. These studies demonstrate that the presence or absence of androgen prenatally specifies penile versus clitoral identity. Differentiated penile features emerge postnatally and are sensitive to and dependent upon prenatal or pre- and postnatal androgen. Emergence of differentiated clitoral features occurs postnatally in either intact or ovariectomized females. It is likely that each penile and clitoral feature has a unique time-course of hormonal dependency/sensitivity.


Subject(s)
Androgens/deficiency , Estrogens/deficiency , Genitalia/growth & development , Morphogenesis , Sex Differentiation , Androgens/pharmacology , Animals , Castration , Diethylstilbestrol/pharmacology , Dihydrotestosterone/pharmacology , Estrogens/pharmacology , Estrogens, Non-Steroidal/pharmacology , Female , Genitalia/anatomy & histology , Male , Mice , Mice, Mutant Strains , Morphogenesis/drug effects , Receptors, Androgen/genetics , Sex Differentiation/drug effects , Sex Differentiation/genetics
10.
Cell Rep ; 42(3): 112273, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36933216

ABSTRACT

Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.


Subject(s)
Histone Code , Histones , 14-3-3 Proteins/genetics , Alternative Splicing/genetics , Chromatin , Gene Expression , Histone Deacetylases/metabolism
11.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014114

ABSTRACT

SARS-CoV-2 emerged, and is evolving to efficiently infect humans worldwide. SARS-CoV-2 evades early innate recognition, interferon signaling activated only in bystander cells. This balance of innate activation and viral evasion has important consequences, but the pathways involved are incompletely understood. Here we find that autophagy genes regulate innate immune signaling, impacting the basal set point of interferons, and thus permissivity to infection. Mechanistically, autophagy genes negatively regulate MAVS, and this low basal level of MAVS is efficiently antagonized by SARS-CoV-2 ORF9b, blocking interferon activation in infected cells. However, upon loss of autophagy increased MAVS overcomes ORF9b-mediated antagonism suppressing infection. This has led to the evolution of SARS-CoV-2 variants to express higher levels of ORF9b, allowing SARS-CoV-2 to replicate under conditions of increased MAVS signaling. Altogether, we find a critical role of autophagy in the regulation of innate immunity and uncover an evolutionary trajectory of SARS-CoV-2 ORF9b to overcome host defenses.

12.
Nat Struct Mol Biol ; 30(1): 31-37, 2023 01.
Article in English | MEDLINE | ID: mdl-36536103

ABSTRACT

To determine how different pioneer transcription factors form a targeted, accessible nucleosome within compacted chromatin and collaborate with an ATP-dependent chromatin remodeler, we generated nucleosome arrays in vitro with a central nucleosome containing binding sites for the hematopoietic E-Twenty Six (ETS) factor PU.1 and Basic Leucine Zipper (bZIP) factors C/EBPα and C/EBPß. Our long-read sequencing reveals that each factor can expose a targeted nucleosome on linker histone-compacted arrays, but with different nuclease sensitivity patterns. The DNA binding domain of PU.1 binds mononucleosomes, but requires an additional intrinsically disordered domain to bind and open compacted chromatin. The canonical mammalian SWI/SNF (cBAF) remodeler was unable to act upon two forms of locally open chromatin unless cBAF was enabled by a separate transactivation domain of PU.1. cBAF potentiates the PU.1 DNA binding domain to weakly open chromatin in the absence of the PU.1 disordered domain. Our findings reveal a hierarchy by which chromatin is opened and show that pioneer factors can provide specificity for action by nucleosome remodelers.


Subject(s)
Chromatin , Nucleosomes , Animals , Transcription Factors/metabolism , DNA , Adenosine Triphosphate/metabolism , Chromatin Assembly and Disassembly , Mammals/genetics
13.
J Urol ; 187(4): 1427-33, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22341273

ABSTRACT

PURPOSE: Estrogenic endocrine disruptors acting via estrogen receptors α and ß have been implicated in the etiology of hypospadias. However, the expression and distribution of estrogen receptors α and ß in normal and hypospadiac human foreskins is unknown. We characterized the location and expression of estrogen receptors α and ß in normal and hypospadiac foreskins. MATERIALS AND METHODS: We prospectively collected excess foreskin from 35 patients undergoing hypospadias repair and 15 patients undergoing elective circumcision. Hypospadias was classified as severe in 18 patients and mild in 17 based on the ectopic position of the meatus. mRNA expression levels in estrogen receptors α and ß were quantified using reverse transcriptase polymerase chain reaction. Receptor location was characterized by immunohistochemical analysis. Additionally immunohistochemical analysis was performed in 4 archived human fetal penises. RESULTS: Mean ± SD ages were similar for the circumcision (9.5±3 months) and hypospadias repair groups (9±3 months, p=0.75). mRNA expression levels in estrogen receptors α and ß were significantly decreased in hypospadiac foreskin cases compared to controls (p<0.001), while no statistically significant differences were seen between foreskins with severe and mild hypospadias. Estrogen receptor ß immunostaining was strong in normal foreskin but weak in hypospadiac foreskin. Estrogen receptor ß immunoreactivity was most intense in the stratum basale and stratum spinosum. Estrogen receptor α immunostaining was weak in normal and mild hypospadias foreskin, and undetectable in severe hypospadias. Fetal penises expressed strong estrogen receptor ß immunopositivity in the urethral plate epithelium, corpus spongiosum, corpora cavernosa and penile skin, while estrogen receptor α immunostaining was not detected. CONCLUSIONS: These data demonstrate a difference in estrogen receptor α and ß expression and location in the foreskin of patients with hypospadias compared to controls. These findings are consistent with aberrant estrogenic effects having a role in the etiology of hypospadias.


Subject(s)
Estrogen Receptor alpha/analysis , Estrogen Receptor alpha/biosynthesis , Estrogen Receptor beta/analysis , Estrogen Receptor beta/biosynthesis , Foreskin/chemistry , Hypospadias/metabolism , Foreskin/pathology , Humans , Hypospadias/pathology , Infant , Male , Prospective Studies
14.
Pediatr Res ; 71(4 Pt 1): 393-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22391641

ABSTRACT

INTRODUCTION: ZEB1 is overexpressed in patients with severe hypospadias. We examined the interaction between ZEB1 and the androgen receptor (AR) in vitro and the expression of AR in boys with hypospadias. RESULTS: ZEB1 and AR colocalize to the nucleus. Estrogen upregulated ZEB1 and AR expression. Chromatin immunoprecipitation (ChIP) demonstrated that ZEB1 binds to an E-box sequence in the AR gene promoter. AR expression is higher in subjects with severe hypospadias than those with mild hypospadias and control subjects (P < 0.05). ZEB1 physically interacts with AR in human foreskin cells. DISCUSSION: AR is overexpressed in patients with severe hypospadias. Environmental estrogenic compounds may increase the risk of hypospadias by facilitating the interaction between ZEB1 and AR. METHODS: Hs68 cells, a fibroblast cell line derived from neonatal human foreskin, were exposed to 0, 10, and 100 nmol/l of estrogen, after which the cellular localization of ZEB1 and AR was assessed using immunocytochemistry. To determine if ZEB1 interacted with the AR gene, ChIP was performed using ZEB1 antibody and polymerase chain reaction (PCR) for AR. Second, AR expression was quantified using real-time PCR and western blot in normal subjects (n = 32), and subjects with mild (n = 16) and severe hypospadia (n = 16).


Subject(s)
Foreskin/metabolism , Gene Expression Regulation , Homeodomain Proteins/biosynthesis , Hypospadias/metabolism , Receptors, Androgen/biosynthesis , Transcription Factors/biosynthesis , Base Sequence , Cell Nucleus/metabolism , Chromatin Immunoprecipitation , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Homeodomain Proteins/physiology , Humans , Male , Molecular Sequence Data , Promoter Regions, Genetic , Receptors, Androgen/physiology , Transcription Factors/physiology , Zinc Finger E-box-Binding Homeobox 1
15.
Elife ; 112022 10 20.
Article in English | MEDLINE | ID: mdl-36264057

ABSTRACT

Alternative splicing occurs in the vast majority of human genes, giving rise to distinct mRNA and protein isoforms. We, and others, have previously identified hundreds of genes that change their isoform expression upon T cell activation via alternative splicing; however, how these changes link activation input with functional output remains largely unknown. Here, we investigate how costimulation of T cells through the CD28 receptor impacts alternative splicing in T cells activated through the T cell receptor (TCR, CD3) and find that while CD28 signaling alone has minimal impact on splicing, it enhances the extent of change for up to 20% of TCR-induced alternative splicing events. Interestingly, a set of CD28-enhanced splicing events occur within genes encoding key components of the apoptotic signaling pathway; namely caspase-9, Bax, and Bim. Using both CRISPR-edited cells and antisense oligos to force expression of specific isoforms, we show for all three of these genes that the isoform induced by CD3/CD28 costimulation promotes resistance to apoptosis, and that changes in all three genes together function combinatorially to further promote cell viability. Finally, we show that the JNK signaling pathway, induced downstream of CD3/CD28 costimulation, is required for each of these splicing events, further highlighting their co-regulation. Together, these findings demonstrate that alternative splicing is a key mechanism by which costimulation of CD28 promotes viability of activated T cells.


Subject(s)
CD28 Antigens , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , CD28 Antigens/metabolism , Alternative Splicing , Cell Survival , Receptors, Antigen, T-Cell/metabolism , Apoptosis
16.
Biol Reprod ; 85(6): 1216-21, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21918128

ABSTRACT

The adult mouse penis represents the end point of masculine sex differentiation of the embryonic genital tubercle and contains bone, cartilage, the urethra, erectile bodies, several types of epithelium, and many individual cell types arrayed into specific anatomical structures. Using contemporary high-resolution imaging techniques, we sought to provide new insights to the current description of adult mouse penile morphology to enable understanding of penile abnormalities, including hypospadias. Examination of serial transverse and longitudinal sections, scanning electron microscopy, and three-dimensional (3D) reconstruction provided a new appreciation of the individual structures in the adult mouse penis and their 3D interrelationships. In so doing, we discovered novel paired erectile bodies, the male urogenital mating protuberance (MUMP), and more accurately described the urethral meatus. These morphological observations were quantified by morphometric analysis and now provide accurate morphological end points of sex differentiation of mouse penis that will be the foundation of future studies to identify normal and abnormal penile development.


Subject(s)
Mice/anatomy & histology , Penis/ultrastructure , Animals , Imaging, Three-Dimensional , Male , Mice, Inbred C57BL
17.
Sci Immunol ; 6(59)2021 05 18.
Article in English | MEDLINE | ID: mdl-34010142

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , COVID-19/prevention & control , Interferons/immunology , Membrane Proteins/agonists , Animals , Cell Line , Chlorocebus aethiops , Enzyme Activation/drug effects , Epithelial Cells/virology , Humans , Immune Evasion/immunology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Vero Cells , Virus Replication/drug effects
18.
Elife ; 92020 12 03.
Article in English | MEDLINE | ID: mdl-33269701

ABSTRACT

Viral infection induces the expression of numerous host genes that impact the outcome of infection. Here, we show that infection of human lung epithelial cells with influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. Although these splicing-regulated genes are not enriched for canonical regulators of viral infection, we find that many of these genes do impact replication of IAV. Moreover, in several cases, specific inhibition of the IAV-induced splicing pattern also attenuates viral infection. We further show that approximately a quarter of the IAV-induced splicing events are regulated by hnRNP K, a host protein required for efficient splicing of the IAV M transcript in nuclear speckles. Finally, we find an increase in hnRNP K in nuclear speckles upon IAV infection, which may alter accessibility of hnRNP K for host transcripts thereby leading to a program of host splicing changes that promote IAV replication.


Subject(s)
Alternative Splicing , Cell Nucleus/virology , Epithelial Cells/virology , Influenza A virus/growth & development , Lung/virology , Virus Replication , A549 Cells , Cell Nucleus/genetics , Cell Nucleus/metabolism , Epithelial Cells/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Host-Pathogen Interactions , Humans , Influenza A virus/genetics , Influenza A virus/pathogenicity , Lung/metabolism
19.
Cell Chem Biol ; 25(11): 1372-1379.e3, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30174311

ABSTRACT

Consistent with its location on the ribosome, reporter assays demonstrate a role for Rps26 in recognition of the Kozak sequence. Consequently, Rps26-deficient ribosomes display preference for mRNAs encoding components of the high salt and high pH stress response pathways and accumulate in yeast exposed to high salt or pH. Here we use this information to reprogram the cellular response to high salt by introducing point mutations in the Kozak sequence of key regulators for the cell wall MAP-kinase, filamentation, or DNA repair pathways. This stimulates their translation upon genetic, or salt-induced Rps26 depletion from ribosomes. Stress resistance assays show activation of the targeted pathways in an Rps26- and salt-dependent manner. Genomic alterations in diverse yeast populations indicate that analogous tuning occurs during adaptation to ecological niches. Thus, evolution shapes translational control across the genome by taking advantage of the accumulation of diverse ribosome populations.


Subject(s)
Gene Expression Regulation, Fungal , Protein Biosynthesis , Ribosomal Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Salt Stress , Gene Deletion , Point Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
20.
Nat Struct Mol Biol ; 24(9): 700-707, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28759050

ABSTRACT

We describe a novel approach to separate two ribosome populations from the same cells and use this method in combination with RNA-seq to identify mRNAs bound to Saccharomyces cerevisiae ribosomes with and without Rps26, a protein linked to the pathogenesis of Diamond-Blackfan anemia (DBA). These analyses reveal that Rps26 contributes to mRNA-specific translation by recognition of the Kozak sequence in well-translated mRNAs and that Rps26-deficient ribosomes preferentially translate mRNA from select stress-response pathways. Surprisingly, exposure of yeast to these stresses leads to the formation of Rps26-deficient ribosomes and to the increased translation of their target mRNAs. These results describe a novel paradigm: the production of specialized ribosomes, which play physiological roles in augmenting the well-characterized transcriptional stress response with a heretofore unknown translational response, thereby creating a feed-forward loop in gene expression. Moreover, the simultaneous gain-of-function and loss-of-function phenotypes from Rps26-deficient ribosomes can explain the pathogenesis of DBA.


Subject(s)
Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL