Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Annu Rev Immunol ; 33: 291-353, 2015.
Article in English | MEDLINE | ID: mdl-25861976

ABSTRACT

Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.


Subject(s)
Adaptive Immunity/physiology , Immunity, Innate/physiology , Ion Channels/metabolism , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Humans , Hypersensitivity/genetics , Hypersensitivity/immunology , Hypersensitivity/metabolism , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism , Immunotherapy/methods , Ion Channels/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Molecular Targeted Therapy , Mutation , Signal Transduction
2.
Nat Immunol ; 23(8): 1208-1221, 2022 08.
Article in English | MEDLINE | ID: mdl-35879451

ABSTRACT

T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.


Subject(s)
Cell Cycle Proteins , Methyltransferases , Adenosine/analogs & derivatives , Animals , Cell Cycle Proteins/metabolism , Methylation , Methyltransferases/genetics , Mice , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
3.
Nat Immunol ; 23(2): 287-302, 2022 02.
Article in English | MEDLINE | ID: mdl-35105987

ABSTRACT

The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.


Subject(s)
Anions/metabolism , Dinucleoside Phosphates/metabolism , Ion Channels/metabolism , Membrane Proteins/metabolism , T-Lymphocytes/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Calcium/metabolism , Female , Mice , Mice, Inbred C57BL , Nucleotides, Cyclic/metabolism , Signal Transduction/physiology
4.
Nat Immunol ; 22(12): 1563-1576, 2021 12.
Article in English | MEDLINE | ID: mdl-34811541

ABSTRACT

Roquin and Regnase-1 proteins bind and post-transcriptionally regulate proinflammatory target messenger RNAs to maintain immune homeostasis. Either the sanroque mutation in Roquin-1 or loss of Regnase-1 cause systemic lupus erythematosus-like phenotypes. Analyzing mice with T cells that lack expression of Roquin-1, its paralog Roquin-2 and Regnase-1 proteins, we detect overlapping or unique phenotypes by comparing individual and combined inactivation. These comprised spontaneous activation, metabolic reprogramming and persistence of T cells leading to autoimmunity. Here, we define an interaction surface in Roquin-1 for binding to Regnase-1 that included the sanroque residue. Mutations in Roquin-1 impairing this interaction and cooperative regulation of targets induced T follicular helper cells, germinal center B cells and autoantibody formation. These mutations also improved the functionality of tumor-specific T cells by promoting their accumulation in the tumor and reducing expression of exhaustion markers. Our data reveal the physical interaction of Roquin-1 with Regnase-1 as a hub to control self-reactivity and effector functions in immune cell therapies.


Subject(s)
Autoimmunity , Cytotoxicity, Immunologic , Immunotherapy, Adoptive , Melanoma, Experimental/therapy , Repressor Proteins/metabolism , Ribonucleases/metabolism , Skin Neoplasms/therapy , T-Lymphocytes/transplantation , Ubiquitin-Protein Ligases/metabolism , Animals , Female , HEK293 Cells , HeLa Cells , Humans , Immunity, Humoral , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Phenotype , Protein Binding , Repressor Proteins/genetics , Ribonucleases/genetics , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment , Ubiquitin-Protein Ligases/genetics
5.
Cell ; 162(6): 1217-28, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26321681

ABSTRACT

Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca(2+)-NFAT signaling and effector functions by repressing sarco/ER Ca(2+)-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/therapy , Monitoring, Immunologic , Phosphoenolpyruvate/metabolism , Tumor Microenvironment , Animals , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Glycolysis , Hexokinase/metabolism , Immunotherapy , Mice , NFATC Transcription Factors/metabolism , Receptors, Antigen, T-Cell/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction , Transforming Growth Factor beta/immunology
6.
Immunity ; 47(4): 664-679.e6, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29030115

ABSTRACT

Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and is essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecule (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules, including calcineurin, and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulate cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directs the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway. We propose that SOCE controls a critical "metabolic checkpoint" at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.


Subject(s)
Calcium Channels/immunology , Calcium Signaling/immunology , Calcium/immunology , T-Lymphocytes/immunology , Animals , Calcineurin/immunology , Calcineurin/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Cell Division/immunology , Cells, Cultured , Female , Glycolysis/immunology , HEK293 Cells , Humans , Immunoblotting , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , NFATC Transcription Factors/genetics , NFATC Transcription Factors/immunology , NFATC Transcription Factors/metabolism , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/immunology , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/genetics , Stromal Interaction Molecule 2/immunology , Stromal Interaction Molecule 2/metabolism , T-Lymphocytes/metabolism
7.
J Neurosci ; 44(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37952941

ABSTRACT

Peripheral sensitization is one of the primary mechanisms underlying the pathogenesis of chronic pain. However, candidate molecules involved in peripheral sensitization remain incompletely understood. We have shown that store-operated calcium channels (SOCs) are expressed in the dorsal root ganglion (DRG) neurons. Whether SOCs contribute to peripheral sensitization associated with chronic inflammatory pain is elusive. Here we report that global or conditional deletion of Orai1 attenuates Complete Freund's adjuvant (CFA)-induced pain hypersensitivity in both male and female mice. To further establish the role of Orai1 in inflammatory pain, we performed calcium imaging and patch-clamp recordings in wild-type (WT) and Orai1 knockout (KO) DRG neurons. We found that SOC function was significantly enhanced in WT but not in Orai1 KO DRG neurons from CFA- and carrageenan-injected mice. Interestingly, the Orai1 protein level in L3/4 DRGs was not altered under inflammatory conditions. To understand how Orai1 is modulated under inflammatory pain conditions, prostaglandin E2 (PGE2) was used to sensitize DRG neurons. PGE2-induced increase in neuronal excitability and pain hypersensitivity was significantly reduced in Orai1 KO mice. PGE2-induced potentiation of SOC entry (SOCE) was observed in WT, but not in Orai1 KO DRG neurons. This effect was attenuated by a PGE2 receptor 1 (EP1) antagonist and mimicked by an EP1 agonist. Inhibition of Gq/11, PKC, or ERK abolished PGE2-induced SOCE increase, indicating PGE2-induced SOCE enhancement is mediated by EP1-mediated downstream cascade. These findings demonstrate that Orai1 plays an important role in peripheral sensitization. Our study also provides new insight into molecular mechanisms underlying PGE2-induced modulation of inflammatory pain.Significance Statement Store-operated calcium channel (SOC) Orai1 is expressed and functional in dorsal root ganglion (DRG) neurons. Whether Orai1 contributes to peripheral sensitization is unclear. The present study demonstrates that Orai1-mediated SOC function is enhanced in DRG neurons under inflammatory conditions. Global and conditional deletion of Orai1 attenuates complete Freund's adjuvant (CFA)-induced pain hypersensitivity. We also demonstrate that prostaglandin E2 (PGE2) potentiates SOC function in DRG neurons through EP1-mediated signaling pathway. Importantly, we have found that Orai1 deficiency diminishes PGE2-induced SOC function increase and reduces PGE2-induced increase in neuronal excitability and pain hypersensitivity. These findings suggest that Orai1 plays an important role in peripheral sensitization associated with inflammatory pain. Our study reveals a novel mechanism underlying PGE2/EP1-induced peripheral sensitization. Orai1 may serve as a potential target for pathological pain.


Subject(s)
Calcium , Dinoprostone , Animals , Female , Male , Mice , Calcium/metabolism , Calcium Channels/metabolism , Dinoprostone/pharmacology , Dinoprostone/metabolism , Freund's Adjuvant/toxicity , Freund's Adjuvant/metabolism , Ganglia, Spinal/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Pain
8.
Immunity ; 44(6): 1350-64, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27261277

ABSTRACT

T follicular helper (Tfh) cells promote affinity maturation of B cells in germinal centers (GCs), whereas T follicular regulatory (Tfr) cells limit the GC reaction. Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels mediated by STIM and ORAI proteins is a fundamental signaling pathway in T lymphocytes. Conditional deletion of Stim1 and Stim2 genes in T cells abolished SOCE and strongly reduced antibody-mediated immune responses following viral infection caused by impaired differentiation and function of Tfh cells. Conversely, aging Stim1Stim2-deficient mice developed humoral autoimmunity with spontaneous autoantibody production due to abolished Tfr cell differentiation in the presence of residual Tfh cells. Mechanistically, SOCE controlled Tfr and Tfh cell differentiation through NFAT-mediated IRF4, BATF, and Bcl-6 transcription-factor expression. SOCE had a dual role in controlling the GC reaction by regulating both Tfh and Tfr cell differentiation, thus enabling protective B cell responses and preventing humoral autoimmunity.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Humoral , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism , T-Lymphocytes/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling , Cells, Cultured , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/metabolism , ORAI1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 2/genetics
9.
Trends Immunol ; 41(10): 878-901, 2020 10.
Article in English | MEDLINE | ID: mdl-32711944

ABSTRACT

Calcium (Ca2+) signals play fundamental roles in immune cell function. The main sources of Ca2+ influx in mammalian lymphocytes following antigen receptor stimulation are Ca2+ release-activated Ca2+ (CRAC) channels. These are formed by ORAI proteins in the plasma membrane and are activated by stromal interaction molecules (STIM) located in the endoplasmic reticulum (ER). Human loss-of-function (LOF) mutations in ORAI1 and STIM1 that abolish Ca2+ influx cause a unique disease syndrome called CRAC channelopathy that is characterized by immunodeficiency autoimmunity and non-immunological symptoms. Studies in mice lacking Stim and Orai genes have illuminated many cellular and molecular mechanisms by which these molecules control lymphocyte function. CRAC channels are required for the differentiation and function of several T lymphocyte subsets that provide immunity to infection, mediate inflammation and prevent autoimmunity. This review examines new insights into how CRAC channels control T cell-mediated immunity.


Subject(s)
Calcium Release Activated Calcium Channels , Calcium Signaling , T-Lymphocytes , Animals , Calcium Release Activated Calcium Channels/genetics , Calcium Release Activated Calcium Channels/immunology , Calcium Signaling/immunology , Humans , Immunity, Cellular/genetics , Immunity, Cellular/immunology , ORAI1 Protein/genetics , ORAI1 Protein/immunology , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/immunology , T-Lymphocytes/immunology
10.
Proc Natl Acad Sci U S A ; 117(28): 16638-16648, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601188

ABSTRACT

The Orai1 channel is regulated by stromal interaction molecules STIM1 and STIM2 within endoplasmic reticulum (ER)-plasma membrane (PM) contact sites. Ca2+ signals generated by Orai1 activate Ca2+-dependent gene expression. When compared with STIM1, STIM2 is a weak activator of Orai1, but it has been suggested to have a unique role in nuclear factor of activated T cells 1 (NFAT1) activation triggered by Orai1-mediated Ca2+ entry. In this study, we examined the contribution of STIM2 in NFAT1 activation. We report that STIM2 recruitment of Orai1/STIM1 to ER-PM junctions in response to depletion of ER-Ca2+ promotes assembly of the channel with AKAP79 to form a signaling complex that couples Orai1 channel function to the activation of NFAT1. Knockdown of STIM2 expression had relatively little effect on Orai1/STIM1 clustering or local and global [Ca2+]i increases but significantly attenuated NFAT1 activation and assembly of Orai1 with AKAP79. STIM1ΔK, which lacks the PIP2-binding polybasic domain, was recruited to ER-PM junctions following ER-Ca2+ depletion by binding to Orai1 and caused local and global [Ca2+]i increases comparable to those induced by STIM1 activation of Orai1. However, in contrast to STIM1, STIM1ΔK induced less NFAT1 activation and attenuated the association of Orai1 with STIM2 and AKAP79. Orai1-AKAP79 interaction and NFAT1 activation were recovered by coexpressing STIM2 with STIM1ΔK. Replacing the PIP2-binding domain of STIM1 with that of STIM2 eliminated the requirement of STIM2 for NFAT1 activation. Together, these data demonstrate an important role for STIM2 in coupling Orai1-mediated Ca2+ influx to NFAT1 activation.


Subject(s)
A Kinase Anchor Proteins/metabolism , Calcium/metabolism , NFATC Transcription Factors/metabolism , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/metabolism , A Kinase Anchor Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , NFATC Transcription Factors/genetics , Neoplasm Proteins/genetics , ORAI1 Protein/genetics , Protein Binding , Signal Transduction , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 2/genetics
11.
Immunity ; 38(5): 881-95, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23499491

ABSTRACT

T cell receptor (TCR) signaling driven by interaction of the TCR with specific complexes of self-peptide and the major histocompatibility complex determines T cell fate in thymic development. However, the signaling pathway through which TCR signal strength regulates distinct T cell lineages remains unknown. Here we have used mice lacking the endoplasmic reticulum Ca2+ sensors stromal interaction molecule 1 (STIM1) and STIM2 to show that STIM-induced store-operated Ca2+ entry is not essential for thymic development of conventional TCRαß+ T cells but is specifically required for the development of agonist-selected T cells (regulatory T cells, invariant natural killer T cells, and TCRαß+ CD8αα+ intestinal intraepithelial lymphocytes). The severe impairment of agonist-selected T cell development is mainly due to a defect in interleukin-2 (IL-2) or IL-15 signaling. Thus, STIM1 and STIM2-mediated store-operated Ca2+ influx, leading to efficient activation of NFAT (nuclear factor of activated T cells), is critical for the postselection maturation of agonist-selected T cells.


Subject(s)
Calcium/metabolism , Membrane Glycoproteins/metabolism , NFATC Transcription Factors/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Calcium Channels/immunology , Calcium Channels/metabolism , Calcium Signaling/immunology , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Interleukin-15/metabolism , Interleukin-2/metabolism , Ion Transport/immunology , Lymphocyte Activation/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2 , T-Lymphocytes, Regulatory/metabolism
12.
Nat Immunol ; 9(4): 432-43, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18327260

ABSTRACT

Store-operated Ca2+ entry through calcium release-activated calcium channels is the chief mechanism for increasing intracellular Ca2+ in immune cells. Here we show that mouse T cells and fibroblasts lacking the calcium sensor STIM1 had severely impaired store-operated Ca2+ influx, whereas deficiency in the calcium sensor STIM2 had a smaller effect. However, T cells lacking either STIM1 or STIM2 had much less cytokine production and nuclear translocation of the transcription factor NFAT. T cell-specific ablation of both STIM1 and STIM2 resulted in a notable lymphoproliferative phenotype and a selective decrease in regulatory T cell numbers. We conclude that both STIM1 and STIM2 promote store-operated Ca2+ entry into T cells and fibroblasts and that STIM proteins are required for the development and function of regulatory T cells.


Subject(s)
Endoplasmic Reticulum/metabolism , Immune Tolerance , Lymphocyte Activation/immunology , Membrane Glycoproteins/physiology , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence , Animals , Biological Transport, Active/genetics , Biological Transport, Active/immunology , Calcium/metabolism , Calcium Channels , Cell Line , Cell Line, Transformed , Cells, Cultured , Endoplasmic Reticulum/physiology , Humans , Immune Tolerance/genetics , Lymphocyte Activation/genetics , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2
13.
J Immunol ; 201(5): 1586-1598, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30021769

ABSTRACT

Developing precise and efficient gene editing approaches using CRISPR in primary human T cell subsets would provide an effective tool in decoding their functions. Toward this goal, we used lentiviral CRISPR/Cas9 systems to transduce primary human T cells to stably express the Cas9 gene and guide RNAs that targeted either coding or noncoding regions of genes of interest. We showed that multiple genes (CD4, CD45, CD95) could be simultaneously and stably deleted in naive, memory, effector, or regulatory T cell (Treg) subsets at very high efficiency. Additionally, nuclease-deficient Cas9, associated with a transcriptional activator or repressor, can downregulate or increase expression of genes in T cells. For example, expression of glycoprotein A repetitions predominant (GARP), a gene that is normally and exclusively expressed on activated Tregs, could be induced on non-Treg effector T cells by nuclease-deficient Cas9 fused to transcriptional activators. Further analysis determined that this approach could be used in mapping promoter sequences involved in gene transcription. Through this CRISPR/Cas9-mediated genetic editing we also demonstrated the feasibility of human T cell functional analysis in several examples: 1) CD95 deletion inhibited T cell apoptosis upon reactivation; 2) deletion of ORAI1, a Ca2+ release-activated channel, abolished Ca2+ influx and cytokine secretion, mimicking natural genetic mutations in immune-deficient patients; and 3) transcriptional activation of CD25 or CD127 expression enhanced cytokine signaling by IL-2 or IL-7, respectively. Taken together, application of the CRISPR toolbox to human T cell subsets has important implications for decoding the mechanisms of their functional outputs.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , T-Lymphocytes, Regulatory/immunology , Female , Humans , Male
14.
J Allergy Clin Immunol ; 142(4): 1297-1310.e11, 2018 10.
Article in English | MEDLINE | ID: mdl-29155098

ABSTRACT

BACKGROUND: Store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ channels is an essential signaling pathway in many cell types. Ca2+ release-activated Ca2+ channels are formed by ORAI1, ORAI2, and ORAI3 proteins and activated by stromal interaction molecule (STIM) 1 and STIM2. Mutations in the ORAI1 and STIM1 genes that abolish SOCE cause a combined immunodeficiency (CID) syndrome that is accompanied by autoimmunity and nonimmunologic symptoms. OBJECTIVE: We performed molecular and immunologic analysis of patients with CID, anhidrosis, and ectodermal dysplasia of unknown etiology. METHODS: We performed DNA sequencing of the ORAI1 gene, modeling of mutations on ORAI1 crystal structure, analysis of ORAI1 mRNA and protein expression, SOCE measurements, immunologic analysis of peripheral blood lymphocyte populations by using flow cytometry, and histologic and ultrastructural analysis of patient tissues. RESULTS: We identified 3 novel autosomal recessive mutations in ORAI1 in unrelated kindreds with CID, autoimmunity, ectodermal dysplasia with anhidrosis, and muscular dysplasia. The patients were homozygous for p.V181SfsX8, p.L194P, and p.G98R mutations in the ORAI1 gene that suppressed ORAI1 protein expression and SOCE in the patients' lymphocytes and fibroblasts. In addition to impaired T-cell cytokine production, ORAI1 mutations were associated with strongly reduced numbers of invariant natural killer T and regulatory T (Treg) cells and altered composition of γδ T-cell and natural killer cell subsets. CONCLUSION: ORAI1 null mutations are associated with reduced numbers of invariant natural killer T and Treg cells that likely contribute to the patients' immunodeficiency and autoimmunity. ORAI1-deficient patients have dental enamel defects and anhidrosis, representing a new form of anhidrotic ectodermal dysplasia with immunodeficiency that is distinct from previously reported patients with anhidrotic ectodermal dysplasia with immunodeficiency caused by mutations in the nuclear factor κB signaling pathway (IKBKG and NFKBIA).


Subject(s)
Ectodermal Dysplasia/genetics , Immunologic Deficiency Syndromes/genetics , ORAI1 Protein/genetics , Calcium/metabolism , Cells, Cultured , Child, Preschool , Fatal Outcome , Female , Humans , Infant , Male , Models, Molecular , Mutation
15.
J Immunol ; 196(2): 573-85, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26673135

ABSTRACT

The function of CD4(+) T cells is dependent on Ca(2+) influx through Ca(2+) release-activated Ca(2+) (CRAC) channels formed by ORAI proteins. To investigate the role of ORAI1 in proinflammatory Th1 and Th17 cells and autoimmune diseases, we genetically and pharmacologically modulated ORAI1 function. Immunization of mice lacking Orai1 in T cells with MOG peptide resulted in attenuated severity of experimental autoimmune encephalomyelitis (EAE). The numbers of T cells and innate immune cells in the CNS of ORAI1-deficient animals were strongly reduced along with almost completely abolished production of IL-17A, IFN-γ, and GM-CSF despite only partially reduced Ca(2+) influx. In Th1 and Th17 cells differentiated in vitro, ORAI1 was required for cytokine production but not the expression of Th1- and Th17-specific transcription factors T-bet and RORγt. The differentiation and function of induced regulatory T cells, by contrast, was independent of ORAI1. Importantly, induced genetic deletion of Orai1 in adoptively transferred, MOG-specific T cells was able to halt EAE progression after disease onset. Likewise, treatment of wild-type mice with a selective CRAC channel inhibitor after EAE onset ameliorated disease. Genetic deletion of Orai1 and pharmacological ORAI1 inhibition reduced the leukocyte numbers in the CNS and attenuated Th1/Th17 cell-mediated cytokine production. In human CD4(+) T cells, CRAC channel inhibition reduced the expression of IL-17A, IFN-γ, and other cytokines in a dose-dependent manner. Taken together, these findings support the conclusion that Th1 and Th17 cell function is particularly dependent on CRAC channels, which could be exploited as a therapeutic approach to T cell-mediated autoimmune diseases.


Subject(s)
Calcium Channels/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Animals , Cell Separation , Chromatography, Liquid , Encephalomyelitis, Autoimmune, Experimental/pathology , Flow Cytometry , Humans , Mice , Mice, Transgenic , ORAI1 Protein , Real-Time Polymerase Chain Reaction , Spinal Cord/immunology , Spinal Cord/pathology , T-Lymphocytes, Regulatory/immunology , Tandem Mass Spectrometry
17.
Proc Natl Acad Sci U S A ; 112(19): 6206-11, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25918394

ABSTRACT

Store-operated Ca(2+) entry (SOCE) is a universal Ca(2+) influx pathway that is important for the function of many cell types. SOCE occurs upon depletion of endoplasmic reticulum (ER) Ca(2+) stores and relies on a complex molecular interplay between the plasma membrane (PM) Ca(2+) channel ORAI1 and the ER Ca(2+) sensor stromal interaction molecule (STIM) 1. Patients with null mutations in ORAI1 or STIM1 genes present with severe combined immunodeficiency (SCID)-like disease. Here, we describe the molecular mechanisms by which a loss-of-function STIM1 mutation (R429C) in human patients abolishes SOCE. R429 is located in the third coiled-coil (CC3) domain of the cytoplasmic C terminus of STIM1. Mutation of R429 destabilizes the CC3 structure and alters the conformation of the STIM1 C terminus, thereby releasing a polybasic domain that promotes STIM1 recruitment to ER-PM junctions. However, the mutation also impairs cytoplasmic STIM1 oligomerization and abolishes STIM1-ORAI1 interactions. Thus, despite its constitutive localization at ER-PM junctions, mutant STIM1 fails to activate SOCE. Our results demonstrate multifunctional roles of the CC3 domain in regulating intra- and intermolecular STIM1 interactions that control (i) transition of STIM1 from a quiescent to an active conformational state, (ii) cytoplasmic STIM1 oligomerization, and (iii) STIM1-ORAI1 binding required for ORAI1 activation.


Subject(s)
Immunologic Deficiency Syndromes/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation, Missense , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Calcium/chemistry , Calcium Channels/metabolism , Cytoplasm/metabolism , Dimerization , Endoplasmic Reticulum/metabolism , Fluorescence Resonance Energy Transfer , Genes, Recessive , HEK293 Cells , Homozygote , Humans , Microscopy, Confocal , ORAI1 Protein , Protein Structure, Tertiary , Stromal Interaction Molecule 1
18.
Proc Natl Acad Sci U S A ; 112(18): 5827-32, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25902527

ABSTRACT

The nourishment of neonates by nursing is the defining characteristic of mammals. However, despite considerable research into the neural control of lactation, an understanding of the signaling mechanisms underlying the production and expulsion of milk by mammary epithelial cells during lactation remains largely unknown. Here we demonstrate that a store-operated Ca(2+) channel subunit, Orai1, is required for both optimal Ca(2+) transport into milk and for milk ejection. Using a novel, 3D imaging strategy, we visualized live oxytocin-induced alveolar unit contractions in the mammary gland, and we demonstrated that in this model milk is ejected by way of pulsatile contractions of these alveolar units. In mammary glands of Orai1 knockout mice, these contractions are infrequent and poorly coordinated. We reveal that oxytocin also induces a large transient release of stored Ca(2+) in mammary myoepithelial cells followed by slow, irregular Ca(2+) oscillations. These oscillations, and not the initial Ca(2+) transient, are mediated exclusively by Orai1 and are absolutely required for milk ejection and pup survival, an observation that redefines the signaling processes responsible for milk ejection. These findings clearly demonstrate that Ca(2+) is not just a substrate for nutritional enrichment in mammals but is also a master regulator of the spatiotemporal signaling events underpinning mammary alveolar unit contraction. Orai1-dependent Ca(2+) oscillations may represent a conserved language in myoepithelial cells of other secretory epithelia, such as sweat glands, potentially shedding light on other Orai1 channelopathies, including anhidrosis (an inability to sweat).


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/chemistry , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Imaging, Three-Dimensional , Ions/chemistry , Lactation , Mammary Glands, Animal/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Milk/metabolism , ORAI1 Protein , Oscillometry , Oxytocin/chemistry , Signal Transduction
19.
J Physiol ; 595(10): 3015-3039, 2017 05 15.
Article in English | MEDLINE | ID: mdl-27510811

ABSTRACT

Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ.


Subject(s)
Ameloblasts/metabolism , Calcium Signaling , Calcium/metabolism , Dental Enamel/cytology , Animals , Biological Transport , Dental Enamel/metabolism , Dental Enamel/ultrastructure , Humans
20.
J Immunol ; 195(3): 1202-17, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26109647

ABSTRACT

Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels is essential for immunity to infection. CRAC channels are formed by ORAI1 proteins in the plasma membrane and activated by stromal interaction molecule (STIM)1 and STIM2 in the endoplasmic reticulum. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause severe immunodeficiency with recurrent infections due to impaired T cell function. SOCE has also been observed in cells of the innate immune system such as macrophages and dendritic cells (DCs) and may provide Ca(2+) signals required for their function. The specific role of SOCE in macrophage and DC function, as well as its contribution to innate immunity, however, is not well defined. We found that nonselective inhibition of Ca(2+) signaling strongly impairs many effector functions of bone marrow-derived macrophages and bone marrow-derived DCs, including phagocytosis, inflammasome activation, and priming of T cells. Surprisingly, however, macrophages and DCs from mice with conditional deletion of Stim1 and Stim2 genes, and therefore complete inhibition of SOCE, showed no major functional defects. Their differentiation, FcR-dependent and -independent phagocytosis, phagolysosome fusion, cytokine production, NLRP3 inflammasome activation, and their ability to present Ags to activate T cells were preserved. Our findings demonstrate that STIM1, STIM2, and SOCE are dispensable for many critical effector functions of macrophages and DCs, which has important implications for CRAC channel inhibition as a therapeutic strategy to suppress pathogenic T cells while not interfering with myeloid cell functions required for innate immunity.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/immunology , Dendritic Cells/immunology , Macrophages/immunology , Membrane Glycoproteins/metabolism , Animals , Antigen Presentation/genetics , Antigen Presentation/immunology , Apoptosis Regulatory Proteins/immunology , Calcium/metabolism , Calcium Channels/genetics , Calcium-Binding Proteins/immunology , Carrier Proteins/immunology , Cell Differentiation/immunology , Dendritic Cells/cytology , Endoplasmic Reticulum/metabolism , Humans , Immunity, Innate/immunology , Inflammasomes/immunology , Lymphocyte Activation/immunology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein , ORAI1 Protein , Phagocytosis/immunology , Severe Combined Immunodeficiency/genetics , Stromal Interaction Molecule 1 , Stromal Interaction Molecule 2 , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL