Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
Photochem Photobiol Sci ; 22(9): 2105-2120, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37261650

ABSTRACT

Natural antioxidants have attracted attention for their therapeutic use as photochemopreventive agents. Inga edulis leaves extract and its purified fraction have high polyphenolic content and high antioxidant capacity. In addition, they presented UV photostability and low citotoxicity in fibroblast cells. In this context, this study first aimed at development of topical formulation containing purified fraction of I. edulis extract and the evaluation of skin penetration of the compounds. Moreover, the photoprotective/photochemopreventive potential of the formulation containing I. edulis purified fraction were investigated in vitro and in vivo. The topical formulation containing 1% of the purified fraction of I. edulis increased the endogenous antioxidant potential of the skin, and vicenin-2 and myricetin compounds were able to penetrate the epidermis and dermis. Additionally, the purified fraction (25 and 50 mg/mL) showed a photoprotective effect against UVA and UVB radiation in L929 fibroblast cells. In vivo studies have shown that the formulation added with purified fraction provided an anti-inflammatory effect on the skin of animals after UVB exposure, since it was observed a reduction in MPO activity, IL-1ß and TNF-α cytokines, and CXCL1/KC chemokine concentrations. In conclusion, the purified fraction of I. edulis, rich in phenolic compounds, when incorporated in topical formulation, appears as an alternative to prevent skin damages induced by UV radiation, due to its antioxidant and anti-inflammatory properties.


Subject(s)
Antioxidants , Skin , Animals , Antioxidants/pharmacology , Skin/radiation effects , Epidermis , Ultraviolet Rays , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves
2.
Chem Biodivers ; 20(6): e202300382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37196243

ABSTRACT

Among the 13 types of propolis classified in Brazil according to their physicochemical properties, green propolis and brown propolis are the most commonly found and used. In this work, a comparison of the physicochemical properties of green and brown propolis produced in Minas Gerais, Brazil was performed according to the methodology established by the Brazilian legislation. And, the content of 9 bioactive compounds in the samples was determined by RP-HPLC. GrProp showed a higher content of pinocembrin, artepillin C and baccharin, and a higher quantity of total flavonoids, in comparison with BrwProp. The mechanical mass content in both types of propolis was above the limit established by legislation. However, the other physicochemical parameters were within the limits. The chemical composition, especially the flavonoid content and the free radical (DPPH) scavenger property confer to both types of propolis a promising pharmacological activity.


Subject(s)
Propolis , Propolis/chemistry , Brazil , Flavonoids/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry
3.
J Wound Care ; 32(Sup3a): xxii-xxx, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36930537

ABSTRACT

Objective: The aim of this research was to evaluate the efficacy of a topical formulation containing chitosan-chamomile microparticles in cutaneous healing in rats. Method: Male Wistar rats (n=57) were randomly distributed into three groups: treatment; vehicle; and control. Evaluations were performed on days 2, 7 and 14 after the surgical procedure using skin lesion photography, and histological and biochemical analyses. Results: The results showed that there was no difference in the healing index and in the histological analysis of the inflammatory infiltrate among groups. Fibrogenesis was more significant in the group treated with the test formulation at day 7, and angiogenesis was greater in the vehicle and chamomile groups at day 2. The quantification of hydroxyproline showed a higher amount of collagen in the group treated with chamomile, mainly at day 14, although the histological quantification of collagen showed no difference between the groups. Conclusion: From the results of this study, it can be concluded that the formulation, although it had no effect on the healing time, improved the quality of the cicatricial tissue formed with a greater quantity of fibroblasts and collagen.


Subject(s)
Chitosan , Rats , Male , Animals , Rats, Wistar , Chitosan/pharmacology , Chamomile , Wound Healing , Collagen/pharmacology , Skin
4.
Planta Med ; 86(6): 415-424, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32126582

ABSTRACT

Ocotea fasciculata presents yangambin (YAN) and its isomer epi-yangambin (EPI-YAN) as major lignans, which are employed as the plant markers for quality control purposes and as potential pharmacological compounds. However, a gap between the pure isomers and safety and efficacy protocols is faced by the scientific community. In this context, this work aimed to report (i) a new and advantageous purifying process in a semi-preparative scale for YAN and EPI-YAN isolation from Ocotea fasciculata, and (ii) an in vitro cytotoxicity study to estimate, for the first time, the LD50 values of the isolated epimers, as well as the influence of albumin concentration in cell culture medium. The best condition for epimers isolation was achieved in normal-phase liquid chromatography. The lignan fraction (LF), previously obtained from the plant ethanolic extract, was purified yielding 17% and 29% of YAN and EPI-YAN, respectively. The in vitro study demonstrated that YAN and EPI-YAN were safe, and only at the highest concentration studied, a decrease on cell viability was observed. The estimated LD50 value was higher than 1612 mg/kg for both epimers. The LF, on the other hand, demonstrated an estimated LD50 of 422 mg/kg. Lignan cytotoxicity studies also evidenced that the higher cell viability was related to the higher concentration of fetal bovine serum as a source of albumin in medium. This is the first time the LD50 and safety of the isolated epimers were estimated, opening up great perspectives of success in in vivo studies.


Subject(s)
Furans , Lignans , Ocotea , Plant Extracts
5.
Microb Pathog ; 126: 263-268, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30419342

ABSTRACT

Visceral leishmaniasis (VL) is a zoonosis caused by the protozoa of the genus Leishmania. Among the species, L. infantum and/or L. infantum (chagasi) are the most important species affecting the Americas. Domestic dogs are the main reservoir of the parasite and participate effectively in the parasite' transmission cycle. The Canine Visceral Leishmaniasis Control Program (PCLV) adopted in Brazil present as strategies the vector control, health education and serological diagnosis of CVL in dogs followed by culling of the seropositive ones. The resolution to eliminate seropositive dogs by euthanasia, when necessary, are the most controversial and least accepted by society. The diagnostic methods for canine visceral leishmaniasis, currently indicated and approved in Brazil by the Ministry of Health from Brazil are the Dual Path Platform (DPP)® as a screening test and the Enzyme immunoassay test (ELISA®). This study aimed to verify the presence of Leishmania spp. DNA in peripheral blood samples of dogs presenting positive serological results byDPP® and ELISA® tests,throughreal-time polymerase chain reaction (rt-PCR), using the pair of primers 150-152 already described. For this purpose, were collected blood samples from 185 seropositive dogs among them, 41 (22%) exhibited some clinical signal of disease, whereas 144 (78%) was asymptomatic. The animals were also analyzed according to gender, race and hair size. According to the results of rt-PCR, it was observed that among the185 seropositive dogs analyzed, only 132 (71%) presented positive results for CVL and 53 (29%) presented negative results. From this, 41/41 symptomatic dogs were positive (100%), while among the asymptomatic dogs, 91/144 were positive (63, 2%) and 53/144 were negative (36, 8%). Concerning the hair size of seropositive dogs, we found that 41 (22%) had long hair, while 144 (78%) had short hair. No statistical significance occurred between the results of rt-PCR, ELISA and DPP tests and the profile of the animals (gender, size of the dogs and hair size), probably due to the small number of samples and the sampling differences of each profile. But statistical significance occurred between the results of rt-PCR and the clinical evaluation, since the rt-PCR was positive in all symptomatic dogs. Thus, through these results, we reached at the following question, which may contribute to an important current debate: the dogs presenting CVL seropositive diagnosis confirmed by tests distributed by the Ministry of Health were in reality ill or were they seropositive by living in an endemic area of the disease? Would these asymptomatic seropositive dogs spread the disease to the inhabitants even presenting a low parasite charge circulating in the blood.


Subject(s)
Dog Diseases/diagnosis , Leishmania/genetics , Leishmania/isolation & purification , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Animals , Antibodies, Protozoan/blood , Brazil , DNA, Protozoan/analysis , Diagnostic Tests, Routine , Dog Diseases/parasitology , Dogs , Female , Leishmania/pathogenicity , Leishmaniasis, Visceral/blood , Male , Pathology, Molecular , Serologic Tests/methods , Serologic Tests/veterinary
6.
Microb Pathog ; 121: 359-362, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29803846

ABSTRACT

Paracoccidioidomycosis (PCM) is a chronic mycosis caused by the saprobic and dimorphic species Paracoccidioides brasiliensis and P. lutzii. This disease is prevalent in Latin American countries. PCM appears as a relevant concern and challenge for the mycologists, since until now there is no a methodology suitable for an efficient and safe diagnosis and species identification. Thus, the present study aimed to validate a methodology for PCM´s diagnosis, using quantitative Polymerase Chain Reaction (qPCR) through target amplification of the gene encoding the recombinant protein Pb27, a common protein to the both species Paracoccidioides brasiliensis and P. lutzii. The experiments were performed in vitro to determine the specificity, efficiency and detection limit of qPCR assay, using specific primers and probe, which sequences were subject to a patent deposited in Brazilian CTIT, under the registration number: BR1020160078830. According to the results the technique showed sensitivity of 94% and specificity of 100%, demonstrating that it will be possible to develop a new fast and safe diagnostic PCM and can be standardized in order to present a low cost, accessible to the patient served by the public health system in Brazil and Latin America.


Subject(s)
DNA, Fungal/isolation & purification , Paracoccidioides/genetics , Paracoccidioidomycosis/diagnosis , Paracoccidioidomycosis/epidemiology , Brazil , Bronchoalveolar Lavage Fluid/microbiology , Female , Humans , Latin America/epidemiology , Male , Paracoccidioides/isolation & purification , Prevalence , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
7.
Environ Technol ; 35(5-8): 945-55, 2014.
Article in English | MEDLINE | ID: mdl-24645478

ABSTRACT

The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response. With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.


Subject(s)
Biological Assay/methods , Environmental Monitoring/methods , Regression Analysis , Water Purification/methods , Arsenic/chemistry , Escherichia coli/metabolism , Feces , Fresh Water , Iron/chemistry , Mercury/chemistry , Models, Statistical , Nephelometry and Turbidimetry , Phosphorus/chemistry , Portugal , Principal Component Analysis , Rivers , Water Microbiology , Water Pollutants, Chemical/analysis
8.
Environ Technol ; 35(21-24): 3124-9, 2014.
Article in English | MEDLINE | ID: mdl-25244140

ABSTRACT

Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used in the treatment of major depression. It has been detected in surface and wastewaters, being able to negatively affect aquatic organisms. Most of the ecotoxicity studies focused only in pharmaceuticals, though excipients can also pose a risk to non-target organisms. In this work the ecotoxicity of five medicines (three generic formulations and two brand labels) containing the same active substance (fluoxetine hydrochloride) was tested on the alga Chlorella vulgaris, in order to evaluate if excipients can influence their ecotoxicity. Effective concentrations that cause 50% of inhibition (EC50) ranging from 0.25 to 15 mg L⁻¹ were obtained in the growth inhibition test performed for the different medicines. The corresponding values for fluoxetine concentration are 10 times lower. Higher EC50 values had been published for the same alga considering only the toxicity of fluoxetine. Therefore, this increase in toxicity may be attributed to the presence of excipients. Thus more studies on ecotoxicological effects of excipients are required in order to assess the environmental risk they may pose to aquatic organisms.


Subject(s)
Chlorella vulgaris/drug effects , Excipients/toxicity , Fluoxetine/toxicity , Selective Serotonin Reuptake Inhibitors/toxicity , Water Pollutants, Chemical/toxicity , Chlorella vulgaris/growth & development , Dimethylpolysiloxanes/toxicity , Ferric Compounds/toxicity , Gelatin/toxicity , Indigo Carmine/toxicity , Starch/toxicity , Titanium/toxicity
9.
J Xenobiot ; 14(3): 873-892, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39051344

ABSTRACT

Pharmaceuticals in the environment are a global concern, with studies in all continents highlighting their widespread occurrence and potential ecological impacts, revealing their presence, fate, and associated risks in aquatic ecosystems. Despite typically occurring at low concentrations (ranging from ng/L to µg/L), advancements in analytical methods and more sensitive equipment have enabled the detection of a higher number of pharmaceuticals. In this study, surface and wastewater samples were extracted using solid phase extraction and analyzed using ultra-high-performance liquid chromatography with tandem mass spectrometry. Among the therapeutic classes investigated, nonsteroidal anti-inflammatory drugs/analgesics, antibiotics, and psychiatric drugs showed a higher number of detected pharmaceuticals. Concentrations ranged from below method detection limit (

10.
Polymers (Basel) ; 15(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37631527

ABSTRACT

The constant change in microplastics (MP) due to exposure to environmental conditions leads to physical and chemical changes that enhance their ability to transport other pollutants, increasing the concern about their widespread presence in the environment. This work aimed to simulate the aging process of six MP (polyamide 6, unplasticized polyvinyl chloride, low-density polyethylene, polystyrene, polyethylene-co-vinyl acetate, polypropylene) in freshwater and seawater ecosystems at laboratory scale and evaluate its effects through optical microscope observation, Fourier transform infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR), Raman spectroscopy, and thermal gravimetric analysis (TGA). Through a combined experimental study of aged MP, the degradation by UV interaction was evidenced by the appearance of new infrared bands in the FTIR spectra assigned to ketones and hydroxyl groups. While Raman analysis and microscope images reveal the appearance of pores, wrinkles, and roughness in the MP surfaces. Variations in the temperature of the maximum weight loss of the MP were observed in the TGA analysis. The adsorption of chlorpyrifos (CPF), a common pesticide widely used in agriculture, by the pristine and aged MP was also studied. The highest affinity for CPF was observed for pristine LDPE and the lowest for PP. The batch adsorption studies revealed an increase in adsorption capacity as a consequence of the aging process for both MP. These results proved that the weathering effects caused changes in the behavior of MP, namely in the interaction with other pollutants.

11.
J Hazard Mater ; 460: 132296, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37619282

ABSTRACT

The in-situ removal of lindane from spiked soil was studied using cork barriers combined with electrokinetic and ohmic heating soil remediation processes. Both vertical and horizontal cork barriers have been evaluated to retain pollutants mobilized by electro-osmotic flow or volatilized by ohmic heating. Moreover, the addition of surfactant solutions in electrolyte wells has been evaluated to promote the dragging of lindane by electrokinetic fluxes. Results indicated that the drag of lindane by liquid flows is not as important as expected, opposite to what happened with the dragging by gaseous flows. The retention of gaseous lindane was also confirmed in adsorption tests carried out in a column packed with cork granules. The addition of surfactant had a very limited effect on the mobility of lindane, and dragging of this species to the electrode wells or to a permeable reactive barrier. On the contrary, the reactivity of lindane during the electrochemical treatments is relevant due to the electrokinetic basic front promoting the in-situ conversion of lindane into less chlorinated pollutants.

12.
Pharmaceutics ; 15(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986857

ABSTRACT

Vegetable oils offer excellent biological properties, but their high lipophilicity limits their bioavailability. This work aimed to develop nanoemulsions based on sunflower and rosehip oils and to evaluate their wound-healing activity. The influence of phospholipids of plant origin on nanoemulsions' characteristics was investigated. A nanoemulsion prepared with a mixture of phospholipids and synthetic emulsifiers (Nano-1) was compared with another prepared only with phospholipids (Nano-2). The healing activity was evaluated in wounds induced in human organotypic skin explant culture (hOSEC) based on histological and immunohistochemical analysis. The hOSEC wound model was validated, showing that high nanoparticle concentration in the wound bed interferes with cell mobility and the ability to respond to the treatment. Nanoemulsions were 130 to 370 nm, with a concentration of 1013 particles/mL, and a low potential to induce inflammatory processes. Nano-2 was three times larger than Nano-1 but less cytotoxic and could target the oils to the epidermis. Nano-1 permeated intact skin to the dermis and showed a more prominent healing effect than Nano-2 in the hOSEC wound model. Changes in the lipid nanoemulsion stabilizers impacted the cutaneous and cellular penetration of the oils, cytotoxicity, and healing kinetics, resulting in versatile delivery systems.

13.
Rev Soc Bras Med Trop ; 56: e0217, 2023.
Article in English | MEDLINE | ID: mdl-36888783

ABSTRACT

BACKGROUND: Sporotrichosis, a cosmopolitan mycosis caused by dimorphic fungi of the Sporothrix complex, affects humans and animals. This study aimed to develop new molecular markers for Sporothrix genome detection in biological samples using PCR. METHODS: A specific region of DNA sequences from the Sporothrix genus, publicly available in GenBank, was chosen for primer design. After testing the in silico specificity of these primers, in vitro specificity was evaluated using the PCR technique. RESULTS: Three specific primers with 100% specificity for the Sporothrix genus were generated. CONCLUSIONS: PCR using the designed primers can be used to develop molecular diagnostics for sporotrichosis.


Subject(s)
Sporothrix , Sporotrichosis , Humans , Animals , Sporotrichosis/diagnosis , Sporothrix/genetics , Polymerase Chain Reaction/methods , Base Sequence
14.
Inorg Chem ; 51(15): 8629-35, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22830308

ABSTRACT

The reaction of [MoO(2)Cl(2)(pypzEA)] (1) (pypzEA = ethyl[3-(pyridin-2-yl)-1H-pyrazol-1-yl]acetate) with water in a Teflon-lined stainless steel autoclave (100 °C) or in an open reflux system leads to the isolation of the molybdenum oxide/pyrazolylpyridine composite material [Mo(2)O(6)(HpypzA)] (2; HpypzA = [3-(pyridinium-2-yl)-1H-pyrazol-1-yl]acetate). The solid state structure of 2 was solved through single crystal and powder X-ray diffraction analyses in conjunction with information derived from FT-IR and (13)C CP MAS NMR spectroscopies and elemental analyses. In the asymmetric unit of 2, two crystallographically distinct Mo(6+) centers are bridged by a syn,syn-carboxylate group of HpypzA. The periodic repetition of these units along the a axis of the unit cell leads to the formation of a one-dimensional composite polymer, (∞)(1)[Mo(2)O(6)(HpypzA)]. The outstretched pyrazolylpyridine groups of adjacent polymers interdigitate to form a zipper-like motif, generating strong onset π-π contacts between adjacent rings of coordinated HpypzA molecules. The composite oxide 2 is a stable heterogeneous catalyst for liquid-phase olefin epoxidation.

15.
Article in English | MEDLINE | ID: mdl-35565001

ABSTRACT

Plastics have been one of the most useful materials in the world, due to their distinguishing characteristics: light weight, strength, flexibility, and good durability. In recent years, the growing consumption of plastics in industries and domestic applications has revealed a serious problem in plastic waste treatments. Pollution by microplastics has been recognized as a serious threat since it may contaminate all ecosystems, including oceans, terrestrial compartments, and the atmosphere. This micropollutant is spread in all types of environments and is serving as a "minor but efficient" vector for carrier contaminants such as pesticides, pharmaceuticals, metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The need to deeply study and update the evolution of microplastic sources, toxicology, extraction and analysis, and behavior is imperative. This review presents an actual state of microplastics, addressing their presence in the environment, the toxicological effects and the need to understand their extent, their interactions with toxic pollutants, the problems that arise in the definition of analytical methods, and the possible alternatives of treatments.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Plastics/toxicity , Wastewater/analysis , Water Pollutants, Chemical/analysis
16.
Article in English | MEDLINE | ID: mdl-35627618

ABSTRACT

The tertiary treatment using microalgae offers an attractive alternative to the removal of low but relevant concentrations of pharmaceuticals from domestic wastewaters. The removal of fluoxetine from aqueous solutions by living and non-living (lyophilized) Chlorella vulgaris was assessed. The determination of the pH at the point of zero charge, Fourier transmittance infrared analysis, and scanning electron microscopy were performed to characterize the microalgae biomass. Kinetic and equilibrium experiments were performed. The pseudo-second-order model described the kinetics of fluoxetine. The corresponding kinetic constants indicated that biosorption was faster onto non-living biomass than onto living biomass. The equilibrium results showed that the systems followed the Langmuir isotherm model. The maximum capacity of living microalgae (1.9 ± 0.1 mg·g-1) was slightly higher than the non-living microalgae (1.6 ± 0.2 mg·g-1). Living Chlorella vulgaris, free and immobilized in calcium-alginate, were also used to remove fluoxetine and nutrients (nitrogen and phosphorus) from treated municipal wastewater in a batch system. In both experiments, fluoxetine was completely removed within six days. The total phosphorus (TP) and total nitrogen (TN) removal efficiencies achieved for free and immobilized cells were, null and 65.0 ± 0.1%, and 86.2 ± 0.1% and 81.8 ± 3.1, respectively.


Subject(s)
Chlorella vulgaris , Microalgae , Water Pollutants, Chemical , Adsorption , Fluoxetine , Nitrogen , Nutrients , Phosphorus , Water/chemistry , Water Pollutants, Chemical/chemistry
17.
J Hazard Mater ; 433: 128812, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35398796

ABSTRACT

A new adsorbent that combines mineral vermiculite with the yeast Saccharomyces cerevisiae, was used for Cd2+ removal. The influence of vermiculite presence on the toxic effects of Cd2+ to Saccharomyces cerevisiae yeast was evaluated as a function of the microorganisms' respiratory activity (CO2 production). The Cd2+ toxicity increased with prolonged exposure time reaching the LC50 value of 857 and 489 mg L-1 after 30 and 120 min, respectively. The yeast managed to bioaccumulate 25.0 ± 0.6 mg g-1 of Cd2+ at the initial Cd2+ concentration of 741.9 mg L-1; the maximum Cd2+ adsorption capacity of vermiculite reached 25 ± 5 mg g-1. The addition of the mineral decreased the cations toxic effect; the LC20 value in vermiculite absence attained approximately 200 mg L-1 after 30 min and decreased to 80 mg L-1 after 2 h, while in the bio-mineral system it was at the level of 435 ± 50 mg L-1 without a significant change in time. The mineral provided a superior living environment for the yeast by removing part of the cations, releasing essential microelements and providing a protective, clay hutch-like habitat for the cells.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Adsorption , Aluminum Silicates , Bioreactors , Cadmium , Cations , Hydrogen-Ion Concentration , Minerals , Saccharomyces cerevisiae , Water Pollutants, Chemical/toxicity
18.
Polymers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080721

ABSTRACT

Microplastics (MP) are spread into all ecosystems and represent a threat to the equilibrium of the environment and human health, not only due to their intrinsic characteristics but also to their action as effective carriers of contaminants, such as pesticides, pharmaceuticals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. The pesticide α-endosulfan is persistent and spread in the environment. The MP are another possible way of dissemination to be considered in the fate of this pesticide. The adsorption dynamics of α-endosulfan by six different MP (low-density polyethylene­LDPE, polyethylene-co-vinyl acetate, unplasticized polyvinyl chloride, polyamide 6, polystyrene granule, polypropylene granule) with different sizes/shapes and chemical compositions were evaluated. The most critical situation was identified for the system LDPE (particle size < 300 µm). Equilibrium studies (48 h equilibrium time) were performed for distilled, tap and filtered river water. Based on the Langmuir model parameters, the highest maximum adsorption capacity was obtained for distilled water, followed by filtered river and tap waters (i.e., 366 ± 39, 247 ± 38, 157 ± 22 µg/g). The obtained results demonstrate the important role that microplastics may have in the fate and transport of pesticides and their potentially harmful effect on the environment, which requires further investigation.

19.
Article in English | MEDLINE | ID: mdl-35270364

ABSTRACT

One of the main challenges in both the design of new wastewater treatment plants and the expansion and improvement of existing ones is the removal of emerging pollutants. Therefore, the search for economic and sustainable treatments is needed to enhance the removal of pharmaceuticals. The potential of a lignocellulosic substrate colonized by Pleurotus ostreatus, a waste from mushroom production, to remove fluoxetine from aqueous solutions was studied. Batch assays were performed to remove 600 µg∙L-1 fluoxetine from aqueous solutions using the colonized mushroom substrate (CMS) and crude enzyme extracts. The removal efficiencies achieved were, respectively, ≥83.1% and 19.6% in 10 min. Batch assays with sterilized CMS and 1-aminobenzotriazole (to inhibit cytochrome P450 enzymes) showed that the higher removal efficiencies achieved in the CMS assays may be attributed to the synergistic contribution of biosorption onto the CMS and lignin modifying enzymes activity, namely laccase activity. A column assay was performed with the CMS, fed with 750 µg∙L-1 fluoxetine aqueous solution. The removal efficiency was 100% during 30 min, decreasing to a final value of 70% after 8 h of operation. The results suggested that CMS can be a promising eco-friendly alternative to remove fluoxetine from aqueous solutions.


Subject(s)
Agaricales , Pleurotus , Biodegradation, Environmental , Fluoxetine , Laccase , Lignin , Water
20.
J Cosmet Dermatol ; 21(3): 1243-1250, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33969632

ABSTRACT

Aglycone isoflavones are estrogen-like bioactive compounds found in low amounts in soybean, which are increased by biotransformation processes. This study investigated two biotransformation processes of soybean extracts with Aspergillus awamori fungus, evaluating aglycone content and capability of stimulation of collagen-I deposition. Isoflavones were quantified via HPLC; cytotoxicity of biotransformed extracts toward mouse and human fibroblasts was evaluated via NRU and apoptosis/necrosis assays; and collagen-I deposition was measured through Western blot, immunofluorescence, and immunoassay. BSE-2 was the biotransformed soybean extract with the highest aglycone content and did not decrease viability or demonstrated cytotoxicity to either L929 or HDFa cells. BSE-2, at the optimal concentration of 1.33 µg/mL, increased substantially collagen-I amount in HDFa intracellular matrix compared to non-biotransformed soybean extract (NBSE) and immunoassay demonstrated that the extracellular deposition was mostly inhibited by BSE-2 concentrations, except at 1.33 µg/mL. Hence, biotransformed soybean extract by the enzymatic filtrate of Aspergillus awamori fungus demonstrated a high nutricosmetic potential, showing safeness and effective collagen-I augmentation.


Subject(s)
Glycine max , Plant Extracts , Animals , Aspergillus , Collagen Type I/metabolism , Fibroblasts , Humans , Mice , Plant Extracts/metabolism , Plant Extracts/pharmacology , Glycine max/metabolism , Glycine max/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL