Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835482

ABSTRACT

At the feto-maternal interface, fetal membranes (FM) play a crucial role throughout pregnancy. FM rupture at term implicates different sterile inflammation mechanisms including pathways activated by the transmembrane glycoprotein receptor for advanced glycation end-products (RAGE) belonging to the immunoglobulin superfamily. As the protein kinase CK2 is also implicated in the inflammation process, we aimed to characterize the expressions of RAGE and the protein kinase CK2 as a candidate regulator of RAGE expression. The amnion and choriodecidua were collected from FM explants and/or primary amniotic epithelial cells throughout pregnancy and at term in spontaneous labor (TIL) or term without labor (TNL). The mRNA and protein expressions of RAGE and the CK2α, CK2α', and CK2ß subunits were investigated using reverse transcription quantitative polymerase chain reaction and Western blot assays. Their cellular localizations were determined with microscopic analyses, and the CK2 activity level was measured. RAGE and the CK2α, CK2α', and CK2ß subunits were expressed in both FM layers throughout pregnancy. At term, RAGE was overexpressed in the amnion from the TNL samples, whereas the CK2 subunits were expressed at the same level in the different groups (amnion/choriodecidua/amniocytes, TIL/TNL), without modification of the CK2 activity level and immunolocalization. This work paves the way for future experiments regarding the regulation of RAGE expression by CK2 phosphorylation.


Subject(s)
Casein Kinase II , Extraembryonic Membranes , Protein Processing, Post-Translational , Receptor for Advanced Glycation End Products , Humans , Casein Kinase II/metabolism , Extraembryonic Membranes/metabolism , Phosphorylation , Receptor for Advanced Glycation End Products/metabolism
2.
Mol Cell Biochem ; 470(1-2): 63-75, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32405972

ABSTRACT

Casein-kinase CK2 is a Ser/Thr protein kinase that fosters cell survival and proliferation of malignant cells. The CK2 holoenzyme, formed by the association of two catalytic alpha/alpha' (CK2α/CK2α') and two regulatory beta subunits (CK2ß), phosphorylates diverse intracellular proteins partaking in key cellular processes. A handful of such CK2 substrates have been identified as targets for the substrate-binding anticancer peptide CIGB-300. However, since CK2ß also contains a CK2 phosphorylation consensus motif, this peptide may also directly impinge on CK2 enzymatic activity, thus globally modifying the CK2-dependent phosphoproteome. To address such a possibility, firstly, we evaluated the potential interaction of CIGB-300 with CK2 subunits, both in cell-free assays and cellular lysates, as well as its effect on CK2 enzymatic activity. Then, we performed a phosphoproteomic survey focusing on early inhibitory events triggered by CIGB-300 and identified those CK2 substrates significantly inhibited along with disturbed cellular processes. Altogether, we provided here the first evidence for a direct impairment of CK2 enzymatic activity by CIGB-300. Of note, both CK2-mediated inhibitory mechanisms of this anticancer peptide (i.e., substrate- and enzyme-binding mechanism) may run in parallel in tumor cells and help to explain the different anti-neoplastic effects exerted by CIGB-300 in preclinical cancer models.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Casein Kinase II/metabolism , Lung Neoplasms/metabolism , Peptides, Cyclic/pharmacology , Catalytic Domain , Cell Line, Tumor , Cell-Free System , Gene Expression Regulation, Neoplastic , Humans , Microscopy, Fluorescence , Phosphorylation , Protein Binding , Proteome , Recombinant Proteins/metabolism
3.
Br J Cancer ; 118(9): 1179-1188, 2018 05.
Article in English | MEDLINE | ID: mdl-29563634

ABSTRACT

BACKGROUND: Vascular endothelial (VE)-cadherin is an endothelial cell-specific protein responsible for endothelium integrity. Its adhesive properties are regulated by post-translational processing, such as tyrosine phosphorylation at site Y685 in its cytoplasmic domain, and cleavage of its extracellular domain (sVE). In hormone-refractory metastatic breast cancer, we recently demonstrated that sVE levels correlate to poor survival. In the present study, we determine whether kidney cancer therapies had an effect on VE-cadherin structural modifications and their clinical interest to monitor patient outcome. METHODS: The effects of kidney cancer biotherapies were tested on an endothelial monolayer model mimicking the endothelium lining blood vessels and on a homotypic and heterotypic 3D cell model mimicking tumour growth. sVE was quantified by ELISA in renal cell carcinoma patients initiating sunitinib (48 patients) or bevacizumab (83 patients) in the first-line metastatic setting (SUVEGIL and TORAVA trials). RESULTS: Human VE-cadherin is a direct target for sunitinib which inhibits its VEGF-induced phosphorylation and cleavage on endothelial monolayer and endothelial cell migration in the 3D model. The tumour cell environment modulates VE-cadherin functions through MMPs and VEGF. We demonstrate the presence of soluble VE-cadherin in the sera of mRCC patients (n = 131) which level at baseline, is higher than in a healthy donor group (n = 96). Analysis of sVE level after 4 weeks of treatment showed that a decrease in sVE level discriminates the responders vs. non-responders to sunitinib, but not bevacizumab. CONCLUSIONS: These data highlight the interest for the sVE bioassay in future follow-up of cancer patients treated with targeted therapies such as tyrosine-kinase inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Pharmacological , Cadherins/metabolism , Carcinoma, Renal Cell/drug therapy , Endothelium, Vascular/drug effects , Kidney Neoplasms/drug therapy , Sunitinib/therapeutic use , Biomarkers, Pharmacological/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cells, Cultured , Clinical Trials as Topic , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Molecular Targeted Therapy/methods , Neoplasm Metastasis , Retrospective Studies , Treatment Outcome
4.
Biochim Biophys Acta ; 1853(11 Pt A): 2885-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26253696

ABSTRACT

The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2ß was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2ß regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2ß-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization.


Subject(s)
Casein Kinase II/metabolism , Cell Nucleus/metabolism , Fas-Associated Death Domain Protein/metabolism , Active Transport, Cell Nucleus/physiology , Casein Kinase II/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Fas-Associated Death Domain Protein/genetics , Humans , Phosphorylation/physiology
5.
Cell Mol Life Sci ; 72(17): 3305-22, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25990538

ABSTRACT

Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (ß), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2ß regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2ß expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2ß in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.


Subject(s)
Breast Neoplasms/enzymology , Casein Kinase II/metabolism , Epithelial-Mesenchymal Transition/physiology , Gene Expression Regulation, Neoplastic/genetics , Signal Transduction/physiology , Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Forkhead Transcription Factors/metabolism , Humans , Snail Family Transcription Factors
6.
Anal Biochem ; 481: 10-7, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25866074

ABSTRACT

An assay was developed for the characterization of protein kinase inhibitors in lysates of mammalian cells based on the measurement of FRET between overexpressed red fluorescent protein (TagRFP)-fused protein kinases (PKs) and luminophore-labeled small-molecule inhibitors (ARC-Photo probes). Two types of the assay, one using TagRFP as the photoluminescence donor together with ARC-Photo probes containing a red fluorophore dye as acceptor, and the other using TagRFP as the acceptor fluorophore in combination with a terbium cryptate-based long-lifetime photoluminescence donor, were used for FRET-based measurements in lysates of the cells overexpressing TagRFP-fused PKs. The second variant of the assay enabled the performance of the measurements under time-resolved conditions that led to substantially higher values of the signal/background ratio and further improved the reliability of the assay.


Subject(s)
Drug Evaluation, Preclinical/methods , Fluorescence Resonance Energy Transfer/methods , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Animals , Cloning, Molecular , HeLa Cells , Humans , Luminescent Agents/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , NIH 3T3 Cells , Protein Kinase Inhibitors/chemistry , Protein Kinases/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Up-Regulation , Red Fluorescent Protein
7.
Proc Natl Acad Sci U S A ; 109(5): 1506-11, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22307605

ABSTRACT

The organization of cells into epithelium depends on cell interaction with both the extracellular matrix (ECM) and adjacent cells. The role of cell-cell adhesion in the regulation of epithelial topology is well-described. ECM is better known to promote cell migration and provide a structural scaffold for cell anchoring, but its contribution to multicellular morphogenesis is less well-understood. We developed a minimal model system to investigate how ECM affects the spatial organization of intercellular junctions. Fibronectin micropatterns were used to constrain the location of cell-ECM adhesion. We found that ECM affects the degree of stability of intercellular junction positioning and the magnitude of intra- and intercellular forces. Intercellular junctions were permanently displaced, and experienced large perpendicular tensional forces as long as they were positioned close to ECM. They remained stable solely in regions deprived of ECM, where they were submitted to lower tensional forces. The heterogeneity of the spatial organization of ECM induced anisotropic distribution of mechanical constraints in cells, which seemed to adapt their position to minimize both intra- and intercellular forces. These results uncover a morphogenetic role for ECM in the mechanical regulation of cells and intercellular junction positioning.


Subject(s)
Extracellular Matrix/physiology , Intercellular Junctions/physiology , Cell Line, Tumor , Humans
8.
Nature ; 453(7197): 879-84, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18496528

ABSTRACT

Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.


Subject(s)
Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Nucleosomes/metabolism , Phosphoprotein Phosphatases/metabolism , Reward , Signal Transduction , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , Dopamine/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/chemistry , Dopamine and cAMP-Regulated Phosphoprotein 32/genetics , Food , Histones/metabolism , Learning , Male , Mice , Mice, Inbred C57BL , Motivation , Motor Activity/physiology , Neostriatum/cytology , Neurons/metabolism , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Transport , Rats , Signal Transduction/drug effects , Substance-Related Disorders
9.
iScience ; 27(2): 108903, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318383

ABSTRACT

Although the involvement of protein kinase CK2 in cancer is well-documented, there is a need for selective CK2 inhibitors suitable for investigating CK2 specific roles in cancer-related biological pathways and further exploring its therapeutic potential. Here, we report the discovery of AB668, an outstanding selective inhibitor that binds CK2 through a bivalent mode, interacting both at the ATP site and an allosteric αD pocket unique to CK2. Using caspase activation assay, live-cell imaging, and transcriptomic analysis, we have compared the effects of this bivalent inhibitor to representative ATP-competitive inhibitors, CX-4945, and SGC-CK2-1. Our results show that in contrast to CX-4945 or SGC-CK2-1, AB668, by targeting the CK2 αD pocket, has a distinct mechanism of action regarding its anti-cancer activity, inducing apoptotic cell death in several cancer cell lines and stimulating distinct biological pathways in renal cell carcinoma.

10.
Cancers (Basel) ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37345040

ABSTRACT

Clear-cell renal cell carcinoma (ccRCC) accounts for 75% of kidney cancers. Due to the high recurrence rate and treatment options that come with high costs and potential side effects, a correct prognosis of patient survival is essential for the successful and effective treatment of patients. Novel biomarkers could play an important role in the assessment of the overall survival of patients. COL7A1 encodes for collagen type VII, a constituent of the basal membrane. COL7A1 is associated with survival in many cancers; however, the prognostic value of COL7A1 expression as a standalone biomarker in ccRCC has not been investigated. With five publicly available independent cohorts, we used Kaplan-Meier curves and the Cox proportional hazards model to investigate the prognostic value of COL7A1, as well as gene set enrichment analysis to investigate genes co-expressed with COL7A1. COL7A1 expression stratifies patients in terms of aggressiveness, where the 5-year survival probability of each of the four groups was 72.4%, 59.1%, 34.15%, and 8.6% in order of increasing expression. Additionally, COL7A1 expression was successfully used to further divide patients of each stage and histological grade into groups of high and low risk. Similar results were obtained in independent cohorts. In vitro knockdown of COL7A1 expression significantly affected ccRCC cells' ability to migrate, leading to the hypothesis that COL7A1 may have a role in cancer aggressiveness. To conclude, we identified COL7A1 as a new prognosis marker that can stratify ccRCC patients.

11.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063696

ABSTRACT

Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized selenium nanoparticles composition is proposed to certify that no chemical bias relative to synthesis issues might have impacted the study. Selenium is an extremely diluted element in the biological environment and therefore requires high-performance techniques with a very low detection limit and high spatial resolution for intracellular imaging. This was explored with state-of-the-art techniques, but also with cryopreparation to preserve the chemical and structural integrity of the cells for spatially resolved and speciation techniques. Monodisperse solutions of SeNPs capped with bovine serum albumin (BSA) were shown to slow down the migration capacity of aggressive prostate cancer cells compared to polydisperse solutions of SeNPs capped with chitosan. BSA coating could prevent interactions between the reactive surface of the nanoparticles and the plasma membrane, mitigating the generation of reactive oxygen species. The intracellular localization showed interaction with mitochondria and also a localization in the lysosome-related organelle. The SeNPs-BSA localization in mitochondria constitute a possible explanation for our result showing a very significant dampening of the PC-3 cell proliferation capabilities. The purpose of the use of sublethal compound concentrations was to limit adverse effects resulting from high cell death to best evaluate some cellular changes and the fate of these SeNPs on PC-3. Our findings provide new insight to further study the various mechanisms of cytotoxicity of SeNPs.

12.
Cell Death Dis ; 14(9): 622, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37736770

ABSTRACT

Clear cell Renal Cell Carcinoma (ccRCC) is one of the most prevalent kidney cancers, which is often asymptomatic and thus discovered at a metastatic state (mRCC). mRCC are highly heterogeneous tumors composed of subclonal populations that lead to poor treatment response rate. Several recent works explored the potential of ccRCC tumoroids culture derived from patients. However, these models were produced following a scaffold-based method using collagen I or Matrigel that exhibit lot variability and whose complexity could induce treatment response modifications and phenotypic alterations. Following the observation that ccRCC tumoroids can create their own niche by secreting extracellular matrix components, we developed the first scaffold-free tumoroid model of ccRCC tumors. Tumoroids from mice as well as from human tumors were generated with high success rate (≥90%) using a magnetic suspension method and standard culture media. Immunofluorescence analysis revealed their self-organization capacities to maintain multiple tumor-resident cell types, including endothelial progenitor cells. Transcriptomic analysis showed the reproducibility of the method highlighting that the majority of gene expression patterns was conserved in tumoroids compared to their matching tumor tissue. Moreover, this model enables to evaluate drug effects and invasiveness of renal cancer cells in a 3D context, providing a robust preclinical tool for drug screening and biomarker assessment in line with alternative ex vivo methods like tumor tissue slice culture or in vivo xenograft models.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Animals , Mice , Carcinoma, Renal Cell/drug therapy , Reproducibility of Results , Kidney Neoplasms/drug therapy , Kidney
13.
Hemasphere ; 7(12): e978, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38026791

ABSTRACT

The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the ß regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2ß knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2ß were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.

14.
Front Mol Biosci ; 9: 900947, 2022.
Article in English | MEDLINE | ID: mdl-35847979

ABSTRACT

CK2 is a hetero-tetrameric serine/threonine protein kinase made up of two CK2α/α' catalytic subunits and two CK2ß regulatory subunits. The free CK2α subunit and the tetrameric holoenzyme have distinct substrate specificity profiles, suggesting that the spatiotemporal organization of the individual CK2 subunits observed in living cells is crucial in the control of the many cellular processes that are governed by this pleiotropic kinase. Indeed, previous studies reported that the unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition (EMT), a process involved in cancer invasion and metastasis. Moreover, sub-stoichiometric expression of CK2ß compared to CK2α in a subset of breast cancer tumors was correlated with the induction of EMT markers and increased epithelial cell plasticity in breast carcinoma progression. Phenotypic changes of epithelial cells are often associated with the activation of phosphotyrosine signaling. Herein, using phosphotyrosine enrichment coupled with affinity capture and proteomic analysis, we show that decreased expression of CK2ß in MCF10A mammary epithelial cells triggers the phosphorylation of a number of proteins on tyrosine residues and promotes the striking activation of the FAK1-Src-PAX1 signaling pathway. Moreover, morphometric analyses also reveal that CK2ß loss increases the number and the spatial distribution of focal adhesion signaling complexes that coordinate the adhesive and migratory processes. Together, our findings allow positioning CK2ß as a gatekeeper for cell spreading by restraining focal adhesion formation and invasion of mammary epithelial cells.

15.
Cell Death Differ ; 29(8): 1625-1638, 2022 08.
Article in English | MEDLINE | ID: mdl-35169297

ABSTRACT

Osteocytes play a critical role in bone remodeling through the secretion of paracrine factors regulating the differentiation and activity of osteoblasts and osteoclasts. Sclerostin is a key osteocyte-derived factor that suppresses bone formation and promotes bone resorption, therefore regulators of sclerostin secretion are a likely source of new therapeutic strategies for treatment of skeletal disorders. Here, we demonstrate that protein kinase CK2 (casein kinase 2) controls sclerostin expression in osteocytes via the deubiquitinase ubiquitin-specific peptidase 4 (USP4)-mediated stabilization of Sirtuin1 (SIRT1). Deletion of CK2 regulatory subunit, Csnk2b, in osteocytes (Csnk2bDmp1) results in low bone mass due to elevated levels of sclerostin. This phenotype in Csnk2bDmp1 mice was partly reversed when sclerostin expression was downregulated by a single intravenous injection with bone-targeting adeno-associated virus 9 (AAV9) carrying an artificial-microRNA that targets Sost. Mechanistically, CK2-induced phosphorylation of USP4 is important for stabilization of SIRT1 by suppressing ubiquitin-dependent proteasomal degradation. Upregulated expression of SIRT1 inhibits sclerostin transcription in osteocytes. Collectively, the CK2-USP4-SIRT1 pathway is crucial for the regulation of sclerostin expression in osteocytes to maintain bone homeostasis.


Subject(s)
Adaptor Proteins, Signal Transducing , Osteocytes , Sirtuin 1 , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Mice , Osteoblasts/metabolism , Osteocytes/metabolism , Osteogenesis , Sirtuin 1/metabolism
16.
Cell Rep ; 38(11): 110516, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294879

ABSTRACT

Sulfs represent a class of unconventional sulfatases which provide an original post-synthetic regulatory mechanism for heparan sulfate polysaccharides and are involved in multiple physiopathological processes, including cancer. However, Sulfs remain poorly characterized enzymes, with major discrepancies regarding their in vivo functions. Here we show that human Sulf-2 (HSulf-2) harbors a chondroitin/dermatan sulfate glycosaminoglycan (GAG) chain, attached to the enzyme substrate-binding domain. We demonstrate that this GAG chain affects enzyme/substrate recognition and tunes HSulf-2 activity in vitro and in vivo. In addition, we show that mammalian hyaluronidase acts as a promoter of HSulf-2 activity by digesting its GAG chain. In conclusion, our results highlight HSulf-2 as a proteoglycan-related enzyme and its GAG chain as a critical non-catalytic modulator of the enzyme activity. These findings contribute to clarifying the conflicting data on the activities of the Sulfs.


Subject(s)
Dermatan Sulfate , Sulfotransferases , Animals , Heparitin Sulfate , Humans , Mammals/metabolism , Protein Binding , Sulfatases/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
17.
Front Immunol ; 13: 959138, 2022.
Article in English | MEDLINE | ID: mdl-36713383

ABSTRACT

Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the ß regulatory subunit of CK2. CK2ßKO mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways. Biochemical analyses demonstrate an increased activation of the NOTCH2 pathway in CK2ßKO animals, which sustains MZ B-cell development. Transcriptomic analyses indicate alterations in biological processes involved in immune response and B-cell activation. Upon sheep red blood cells (SRBC) immunization CK2ßKO mice exhibit enlarged germinal centers (GCs) but display a limited capacity to generate class-switched GC B cells and immunoglobulins. In vitro assays highlight that B cells lacking CK2ß have an impaired signaling downstream of BCR, Toll-like receptor, CD40, and IL-4R all crucial for B-cell activation and antigen presenting efficiency. Somatic hypermutations analysis upon 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Chicken Gamma Globulin (NP-CGG) evidences a reduced NP-specific W33L mutation frequency in CK2ßKO mice suggesting the importance of the ß subunit in sustaining antibody affinity maturation. Lastly, since diffuse large B cell lymphoma (DLBCL) cells derive from GC or post-GC B cells and rely on CK2 for their survival, we sought to investigate the consequences of CK2 inhibition on B cell signaling in DLBCL cells. In line with the observations in our murine model, CK2 inactivation leads to signaling defects in pathways that are essential for malignant B-lymphocyte activation.


Subject(s)
Casein Kinase II , Lymphocyte Activation , Animals , Mice , Sheep , Casein Kinase II/genetics , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Cell Differentiation
18.
Mol Cell Biochem ; 356(1-2): 75-81, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21861102

ABSTRACT

Programs that govern stem cell maintenance and pluripotency are dependent on extracellular factors and of intrinsic cell modulators. Embryonic stem (ES) cells with a specific depletion of the gene encoding the regulatory subunit of protein kinase CK2 (CK2ß) revealed a viability defect. However, analysis of CK2ß functions along the neural lineage established CK2ß as a positive regulator for neural stem/progenitor cell (NSC) proliferation and multipotency. By using an in vitro genetic conditional approach, we demonstrate in this work that specific domains of CK2ß involved in the regulatory function towards CK2 catalytic subunits are crucial structural determinants for ES cell homeostasis.


Subject(s)
Casein Kinase II/chemistry , Casein Kinase II/metabolism , Embryonic Stem Cells/enzymology , Animals , Catalytic Domain , Cell Differentiation , Cell Lineage , Cell Proliferation , Cell Survival , Embryonic Stem Cells/cytology , Mice , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Neural Stem Cells/cytology , Neural Stem Cells/enzymology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Structure-Activity Relationship , Teratoma/pathology
19.
Mol Cell Biochem ; 356(1-2): 11-20, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21755461

ABSTRACT

Protein kinase CK2 participates in the regulation of fundamental cellular processes. Among these processes, cell polarity and cell morphology are controlled by this enzyme probably through the phosphorylation of key proteins. To further study the involvement of CK2 in these processes, we showed that in epithelial cells, the regulatory CK2ß subunit was required for LKB1-dependent polarization and cell adhesion. Moreover, CK2ß silencing in MCF10A mammary epithelial cells triggered changes in their morphology correlated with the acquisition of mesenchymal phenotype, which were reminiscent to TGFß-induced epithelial-to-mesenchymal-transition (EMT). TGFß has emerged as a major inducer of EMT both in vitro and in vivo. We found that among the TGFß isoforms, TGFß2 expression was strongly induced in CK2ß-knockdown cells. However, the EMT phenotype induced in response to CK2ß silencing was not abolished by blocking the TGFß signaling pathway at TGFß receptor level, suggesting that alternative pathways might be involved. Given the importance of CK2 in tumorigenesis, a dysregulation of CK2ß expression might contribute to EMT induction during cancer progression.


Subject(s)
Casein Kinase II/metabolism , Epithelial-Mesenchymal Transition , Animals , Cell Adhesion , Cell Line , Cell Polarity , Cell Shape , Epithelial Cells/cytology , Epithelial Cells/enzymology , Gene Knockdown Techniques , Humans , Mice , NIH 3T3 Cells , Phenotype , RNA, Small Interfering/metabolism , Transforming Growth Factor beta2/metabolism , Up-Regulation
20.
Cancers (Basel) ; 13(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203890

ABSTRACT

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.

SELECTION OF CITATIONS
SEARCH DETAIL