Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Rev Genet ; 23(10): 606-623, 2022 10.
Article in English | MEDLINE | ID: mdl-35459860

ABSTRACT

The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.


Subject(s)
Genome, Mitochondrial , Animals , Cryoelectron Microscopy , Mammals/genetics , Mammals/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation
2.
Mol Cell ; 76(5): 784-796.e6, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31588022

ABSTRACT

Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.


Subject(s)
14-3-3 Proteins/metabolism , Biomarkers, Tumor/metabolism , Exoribonucleases/metabolism , Mitochondria/enzymology , Oligonucleotides/metabolism , Promoter Regions, Genetic , RNA Stability , RNA, Mitochondrial/metabolism , 14-3-3 Proteins/deficiency , 14-3-3 Proteins/genetics , Animals , Biomarkers, Tumor/genetics , Exoribonucleases/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Humans , Mice, Inbred C57BL , Mice, Knockout , RNA, Mitochondrial/genetics , Sf9 Cells , Spodoptera
3.
Hum Mol Genet ; 33(R1): R61-R79, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779771

ABSTRACT

Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.


Subject(s)
Disease Models, Animal , Mitochondria , Mitochondrial Diseases , Mitochondrial Proteins , Oxidative Phosphorylation , Protein Biosynthesis , Animals , Mice , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Genome, Mitochondrial , Mutation
4.
Cell ; 146(4): 645-58, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854988

ABSTRACT

The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com).


Subject(s)
Gene Expression Profiling , Mitochondria/genetics , RNA/analysis , Cell Nucleus/metabolism , DNA Footprinting , DNA-Binding Proteins/analysis , Deoxyribonuclease I/metabolism , Gene Expression Regulation , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Humans , Locus Control Region , Mitochondrial Proteins/analysis , Nucleic Acid Conformation , RNA/metabolism , RNA, Mitochondrial , Sequence Analysis, RNA
5.
Hum Mol Genet ; 31(21): 3597-3612, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35147173

ABSTRACT

Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.


Subject(s)
Brain Diseases , Mitochondrial Diseases , Animals , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Proteomics
6.
Nat Chem Biol ; 18(4): 403-411, 2022 04.
Article in English | MEDLINE | ID: mdl-35210620

ABSTRACT

Directed evolution emulates the process of natural selection to produce proteins with improved or altered functions. These approaches have proven to be very powerful but are technically challenging and particularly time and resource intensive. To bypass these limitations, we constructed a system to perform the entire process of directed evolution in silico. We employed iterative computational cycles of mutation and evaluation to predict mutations that confer high-affinity binding activities for DNA and RNA to an initial de novo designed protein with no inherent function. Beneficial mutations revealed modes of nucleic acid recognition not previously observed in natural proteins, highlighting the ability of computational directed evolution to access new molecular functions. Furthermore, the process by which new functions were obtained closely resembles natural evolution and can provide insights into the contributions of mutation rate, population size and selective pressure on functionalization of macromolecules in nature.


Subject(s)
Nucleic Acids , Proteins , DNA/chemistry , Directed Molecular Evolution , Mutation , Proteins/chemistry , RNA
7.
Nature ; 560(7717): 263-267, 2018 08.
Article in English | MEDLINE | ID: mdl-30089917

ABSTRACT

Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.


Subject(s)
Cryoelectron Microscopy , Mammals , Mitochondria/ultrastructure , Peptide Chain Initiation, Translational , Animals , Codon, Initiator/genetics , Eukaryotic Initiation Factors/chemistry , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/ultrastructure , Mitochondria/chemistry , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/ultrastructure , Models, Molecular , RNA, Mitochondrial/chemistry , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/ultrastructure , RNA, Transfer, Met/genetics , RNA, Transfer, Met/metabolism , RNA, Transfer, Met/ultrastructure
8.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35947649

ABSTRACT

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Subject(s)
DNA, Mitochondrial , Ribonuclease H , Mice , Animals , DNA, Mitochondrial/chemistry , Ribonuclease H/genetics , Ribonuclease H/metabolism , RNA/chemistry , DNA Replication/genetics , Mitochondria/genetics , Mammals/genetics
9.
PLoS Genet ; 17(11): e1009873, 2021 11.
Article in English | MEDLINE | ID: mdl-34748562

ABSTRACT

Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing.


Subject(s)
Mitochondrial Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA, Mitochondrial/metabolism , RNA-Binding Proteins/metabolism , Cell Line , Gene Knockout Techniques , Humans , Mitochondrial Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcriptome
10.
EMBO J ; 38(24): e102155, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31721250

ABSTRACT

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Subject(s)
Cell Proliferation , Mitochondria/metabolism , Organelle Biogenesis , Signal Transduction , Animals , Citric Acid Cycle/physiology , Escherichia coli/metabolism , Female , Metabolomics , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Proteomics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
PLoS Genet ; 16(3): e1008604, 2020 03.
Article in English | MEDLINE | ID: mdl-32130224

ABSTRACT

The influence of environmental insults on the onset and progression of mitochondrial diseases is unknown. To evaluate the effects of infection on mitochondrial disease we used a mouse model of Leigh Syndrome, where a missense mutation in the Taco1 gene results in the loss of the translation activator of cytochrome c oxidase subunit I (TACO1) protein. The mutation leads to an isolated complex IV deficiency that mimics the disease pathology observed in human patients with TACO1 mutations. We infected Taco1 mutant and wild-type mice with a murine cytomegalovirus and show that a common viral infection exacerbates the complex IV deficiency in a tissue-specific manner. We identified changes in neuromuscular morphology and tissue-specific regulation of the mammalian target of rapamycin pathway in response to viral infection. Taken together, we report for the first time that a common stress condition, such as viral infection, can exacerbate mitochondrial dysfunction in a genetic model of mitochondrial disease.


Subject(s)
Cytochrome-c Oxidase Deficiency/genetics , Cytomegalovirus Infections/genetics , Electron Transport Complex IV/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Muromegalovirus/pathogenicity , Animals , Cytochrome-c Oxidase Deficiency/virology , Cytomegalovirus Infections/virology , Disease Models, Animal , Leigh Disease/genetics , Leigh Disease/virology , Mice , Mice, Inbred C57BL , Mitochondrial Diseases/virology , Mutation/genetics , TOR Serine-Threonine Kinases/genetics
12.
J Cell Sci ; 133(14)2020 07 24.
Article in English | MEDLINE | ID: mdl-32576663

ABSTRACT

The mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that the mitochondrial ribosome may associate with the inner membrane to facilitate co-translational insertion of the hydrophobic oxidative phosphorylation (OXPHOS) proteins into the inner membrane. We generated three mutant knockout cell lines for the CL biosynthesis gene Crls1 to investigate the effects of CL loss on mitochondrial protein synthesis. Reduced CL levels caused altered mitochondrial morphology and transcriptome-wide changes that were accompanied by uncoordinated mitochondrial translation rates and impaired respiratory chain supercomplex formation. Aberrant protein synthesis was caused by impaired formation and distribution of mitochondrial ribosomes. Reduction or loss of CL resulted in divergent mitochondrial and endoplasmic reticulum stress responses. We show that CL is required to stabilise the interaction of the mitochondrial ribosome with the membrane via its association with OXA1 (also known as OXA1L) during active translation. This interaction facilitates insertion of newly synthesised mitochondrial proteins into the inner membrane and stabilises the respiratory supercomplexes.


Subject(s)
Cardiolipins , Mitochondrial Ribosomes , Cardiolipins/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
13.
Biochem Soc Trans ; 50(5): 1505-1516, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36305591

ABSTRACT

The discovery of CRISPR-Cas9 and its widespread use has revolutionised and propelled research in biological sciences. Although the ability to target Cas9's nuclease activity to specific sites via an easily designed guide RNA (gRNA) has made it an adaptable gene editing system, it has many characteristics that could be improved for use in biotechnology. Cas9 exhibits significant off-target activity and low on-target nuclease activity in certain contexts. Scientists have undertaken ambitious protein engineering campaigns to bypass these limitations, producing several promising variants of Cas9. Cas9 variants with improved and alternative activities provide exciting new tools to expand the scope and fidelity of future CRISPR applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Endonucleases/genetics , Endonucleases/metabolism
14.
Genet Med ; 24(2): 384-397, 2022 02.
Article in English | MEDLINE | ID: mdl-34906446

ABSTRACT

PURPOSE: We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS: We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS: We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION: Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.


Subject(s)
Hypopituitarism , Primary Ovarian Insufficiency , Animals , Female , Humans , Hypopituitarism/genetics , Male , Mice , Nuclear Proteins/genetics , Pedigree , Phenotype , Primary Ovarian Insufficiency/genetics , Prolactin/genetics , RNA-Binding Proteins/genetics
15.
J Physiol ; 599(14): 3495-3512, 2021 07.
Article in English | MEDLINE | ID: mdl-32822065

ABSTRACT

Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Current drug therapeutics for HCM patients are effective in relieving symptoms, but do not prevent or reverse disease progression. Moreover, due to heterogeneity in the clinical manifestations of the disease, patients experience variable outcomes in response to therapeutics. Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. While some similarities exist, each mutation appears to lead to mutation-specific pathophysiology. Furthermore, these alterations may precede or proceed development of the pathology. This review assesses the efficacy of HCM therapeutics from studies performed in animal models of HCM and human clinical trials. Evidence suggests that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. In addition, a clear understanding of mutation-specific mechanisms may assist in informing the most effective therapeutic mode of action.


Subject(s)
Cardiomyopathy, Hypertrophic , Animals , Calcium/metabolism , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/genetics , Energy Metabolism , Humans , Mutation , Sarcomeres/metabolism
16.
J Physiol ; 599(14): 3449-3462, 2021 07.
Article in English | MEDLINE | ID: mdl-32710561

ABSTRACT

The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.


Subject(s)
Genome, Mitochondrial , Protein Biosynthesis , Animals , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ribosomes/metabolism
17.
EMBO Rep ; 20(6)2019 06.
Article in English | MEDLINE | ID: mdl-31036713

ABSTRACT

Regulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that Tefm is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional Tefm-knockout hearts. In contrast, the promoter-proximal transcripts are much increased in Tefm knockout mice, but they mostly terminate before the region where the switch from transcription to replication occurs, and consequently, de novo mtDNA replication is profoundly reduced. Unexpectedly, deep sequencing of RNA from Tefm knockouts revealed accumulation of unprocessed transcripts in addition to defective transcription elongation. Furthermore, a proximity-labeling (BioID) assay showed that TEFM interacts with multiple RNA processing factors. Our data demonstrate that TEFM acts as a general transcription elongation factor, necessary for both gene transcription and replication primer formation, and loss of TEFM affects RNA processing in mammalian mitochondria.


Subject(s)
Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , RNA Processing, Post-Transcriptional , Transcription Elongation, Genetic , Transcription Factors/metabolism , Animals , DNA, Mitochondrial , Embryonic Development/genetics , Gene Deletion , Gene Expression Regulation , Genetic Loci , Heterozygote , Mice , Mice, Knockout , Mitochondria/ultrastructure , Phenotype , Promoter Regions, Genetic
18.
Semin Cell Dev Biol ; 76: 132-141, 2018 04.
Article in English | MEDLINE | ID: mdl-28843979

ABSTRACT

Repeat proteins regulate the expression of the mammalian mitochondrial genome at the level of transcription, processing, maturation, and translation. Defects in the regulation of mitochondrial gene expression due to mutations in genes encoding repeat proteins can lead to mitochondrial dysfunction and disease, however the molecular mechanisms that regulate mitochondrial gene expression and how defects in these processes cause disease still remains poorly understood. Recently solved crystal structures, characterisation of the new genetic models, and use of RNA sequencing (RNA-Seq) technologies have greatly expanded our current understanding of mitochondrial repeat proteins and biology.


Subject(s)
Mitochondrial Proteins/genetics , Protein Domains/genetics , Transcriptome/genetics , Humans
19.
Am J Hum Genet ; 101(2): 239-254, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777931

ABSTRACT

The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.


Subject(s)
DNA, Mitochondrial/genetics , Leigh Disease/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Adolescent , Base Sequence , Child , Child, Preschool , Exome/genetics , Female , Humans , Infant , Leigh Disease/enzymology , Male , Mitochondria/genetics , Oxidative Phosphorylation , Proteomics , RNA Splicing/genetics , Sequence Analysis, DNA
20.
EMBO Rep ; 19(10)2018 10.
Article in English | MEDLINE | ID: mdl-30126926

ABSTRACT

The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs, and miRNAs identified the molecular targets of ELAC2 in vivo We show that ELAC2 is required for processing of tRNAs and for the balanced maintenance of C/D box snoRNAs, miRNAs, and a new class of tRNA fragments. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis and the assembly of mitochondrial ribosomes and cytoplasmic polysomes. We show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3' tRNA processing is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.


Subject(s)
Endoribonucleases/genetics , Neoplasm Proteins/genetics , RNA, Mitochondrial/genetics , RNA, Untranslated/genetics , Animals , Cell Nucleus/genetics , Gene Expression Profiling , Mice , MicroRNAs/genetics , RNA, Small Nucleolar/genetics , RNA, Transfer/genetics , RNA, Untranslated/classification , RNA, Untranslated/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL