Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Virol ; 95(16): e0084121, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076479

ABSTRACT

Lung-localized CD4 T cells play a critical role in the control of influenza virus infection and can provide broadly protective immunity. However, current influenza vaccination strategies primarily target influenza hemagglutinin (HA) and are administered peripherally to induce neutralizing antibodies. We have used an intranasal vaccination strategy targeting the highly conserved influenza nucleoprotein (NP) to elicit broadly protective lung-localized CD4 T cell responses. The vaccine platform consists of a self-assembling nanolipoprotein particle (NLP) linked to NP with an adjuvant. We have evaluated the functionality, in vivo localization, and persistence of the T cells elicited. Our study revealed that intranasal vaccination elicits a polyfunctional subset of lung-localized CD4 T cells that persist long term. A subset of these lung CD4 T cells localize to the airway, where they can act as early responders following encounter with cognate antigen. Polyfunctional CD4 T cells isolated from airway and lung tissue produce significantly more effector cytokines IFN-γ and TNF-α, as well as cytotoxic functionality. When adoptively transferred to naive recipients, CD4 T cells from NLP:NP-immunized lung were sufficient to mediate 100% survival from lethal challenge with H1N1 influenza virus. IMPORTANCE Exploiting new, more efficacious strategies to potentiate influenza virus-specific immune responses is important, particularly for at-risk populations. We have demonstrated the promise of direct intranasal protein vaccination to establish long-lived immunity in the lung with CD4 T cells that possess features and positioning in the lung that are associated with both immediate and long-term immunity, as well as demonstrating direct protective potential.


Subject(s)
Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Influenza Vaccines/immunology , Lung/immunology , Orthomyxoviridae Infections/prevention & control , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Administration, Intranasal , Adoptive Transfer , Animals , Antigens, Viral/administration & dosage , Antigens, Viral/chemistry , CD4-Positive T-Lymphocytes/transplantation , Immunity, Mucosal , Immunization, Secondary , Immunologic Memory , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Lipoproteins/administration & dosage , Lipoproteins/chemistry , Lipoproteins/immunology , Lung/blood supply , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/transplantation
2.
PLoS Comput Biol ; 16(5): e1007834, 2020 05.
Article in English | MEDLINE | ID: mdl-32453727

ABSTRACT

Neurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks. Our model combines the class of Stochastic Block Models for community formation with Gaussian processes to model changes in the community structure as a smooth function of time. We validate our model on synthetic data and demonstrate its utility on three different studies using in vitro cultures of dissociated neurons.


Subject(s)
Action Potentials , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Animals , Cells, Cultured , Cerebral Cortex/cytology , Electrodes , Hippocampus/cytology , Markov Chains , Mice , Neuroglia/cytology , Normal Distribution , Probability , Rats , Stochastic Processes , Time Factors
3.
J Immunol ; 202(2): 591-597, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30541879

ABSTRACT

MHC proteins that present peptide ligands for recognition by TCR form nanoscale clusters on the cell membrane of APCs. How the extent of MHC clustering controls productive TCR engagement and TCR-mediated signaling has not been systematically studied. To evaluate the role of MHC clustering, we exploited nanoscale discoidal membrane mimetics (nanolipoprotein particles) to capture and present peptide-MHC (pMHC) ligands at various densities. We examined the binding of these model membrane clusters to the surface of live human CD8+ T cells and the subsequent triggering of intracellular signaling. The data demonstrate that the proximity of pMHC ligands, high association rate of CD8-MHC interactions, and relatively long lifetime of cognate TCR-pMHC complexes emerge as essential parameters, explaining the significance of MHC clustering. Rapid rebinding of CD8 to MHC suggests a dual role of CD8 in facilitating the T cells' hunt for a rare foreign pMHC ligand and the induction of rapid T cell response. Thus, our findings provide a new understanding of how MHC clustering influences multivalent interactions of pMHC ligands with CD8 and TCR on live T cells that regulate Ag recognition, kinetics of intracellular signaling, and the selectivity and efficiency of T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Binding Sites , Biomimetics , Humans , Kinetics , Lymphocyte Activation , Peptides/chemistry , Protein Binding
4.
Nanomedicine ; 24: 102154, 2020 02.
Article in English | MEDLINE | ID: mdl-31982617

ABSTRACT

In vivo delivery of large RNA molecules has significant implications for novel gene therapy, biologics delivery, and vaccine applications. We have developed cationic nanolipoprotein particles (NLPs) to enhance the complexation and delivery of large self-amplifying mRNAs (replicons) in vivo. NLPs are high-density lipoprotein (HDL) mimetics, comprised of a discoidal lipid bilayer stabilized by apolipoproteins that are readily functionalized to provide a versatile delivery platform. Herein, we systematically screened NLP assembly with a wide range of lipidic and apolipoprotein constituents, using biophysical metrics to identify lead candidates for in vivo RNA delivery. NLPs formulated with cationic lipids successfully complexed with RNA replicons encoding luciferase, provided measurable protection from RNase degradation, and promoted replicon in vivo expression. The NLP complexation of the replicon and in vivo transfection efficiency were further enhanced by modulating the type and percentage of cationic lipid, the ratio of cationic NLP to replicon, and by incorporating additive molecules.


Subject(s)
Lipoproteins, HDL/metabolism , RNA, Messenger/metabolism , Apolipoproteins/chemistry , Apolipoproteins/metabolism , Biomimetics , Lipid Bilayers/chemistry , Lipoproteins, HDL/chemistry , RNA, Messenger/chemistry , Replicon/genetics
5.
J Biol Chem ; 292(36): 15121-15132, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28739800

ABSTRACT

Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Animals , Bacterial Outer Membrane Proteins/genetics , Base Sequence , Cell-Free System , Chlamydia Infections/microbiology , Female , Mice , Mice, Inbred BALB C
6.
Biophys J ; 106(2): L05-8, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24461026

ABSTRACT

Using fluorescence correlation spectroscopy, we measured a dissociation constant of 20 nM between EGFP-labeled LcrV from Yersinia pestis and its cognate membrane-bound protein YopB inserted into a lipid nanodisc. The combination of fluorescence correlation spectroscopy and nanodisc technologies provides a powerful approach to accurately measure binding constants of interactions between membrane bound and soluble proteins in solution. Straightforward sample preparation, acquisition, and analysis procedures make this combined technology attractive for accurately measuring binding kinetics for this important class of protein-protein interactions.


Subject(s)
Antigens, Bacterial/metabolism , Cell Membrane/metabolism , Lipid Bilayers/chemistry , Membranes, Artificial , Nanostructures/chemistry , Pore Forming Cytotoxic Proteins/metabolism , Spectrometry, Fluorescence/methods , Green Fluorescent Proteins/metabolism , Protein Binding
7.
Nano Lett ; 13(4): 1440-5, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23517010

ABSTRACT

We experimentally demonstrate that plasmonic nanoparticles embedded in the evanescent field of subwavelength optical waveguides (WGs) are highly sensitive to distances normal to the propagation of light, showing an ~10× increase in spatial resolution compared to the optical field decay of the WG. The scattering cross-section of the Au nanoparticle is increased by the plasmon-dielectric coupling interaction when the nanoparticle is placed near the dielectric surface of the WG, and the decay of the scattering signal is enhanced, showing angstrom level distance sensitivity within 10 nm from the WG. Numerical studies with the finite-difference time-domain (FDTD) method correlate well with the experimental results. To demonstrate real-time monitoring of a single molecule stretching in the evanescent field, we linked individual single-stranded DNA molecules between the WG and plasmonic nanoparticles and pushed on the nanoparticles with fluidic forces. The simple design and ease of obtaining optical feedback on molecular displacements makes our approach ideal for new in situ force sensing devices, imaging technologies, and high-throughput molecular analysis.


Subject(s)
DNA, Single-Stranded/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , DNA, Single-Stranded/isolation & purification , Fiber Optic Technology , Gold/chemistry , Light , Scattering, Radiation
8.
Trends Mol Med ; 30(6): 524-526, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485647

ABSTRACT

Bacterial infections are an urgent public health priority. The application of mRNA vaccine technology to prevent bacterial infections is a promising therapeutic strategy undergoing active development. This article discusses recent advances and limitations of mRNA vaccines to prevent bacterial diseases and provides perspectives on future research directions.


Subject(s)
Bacterial Infections , mRNA Vaccines , Humans , Bacterial Infections/prevention & control , Bacterial Infections/immunology , Animals , Bacterial Vaccines/immunology , Vaccines, Synthetic/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Vaccine Development/methods
9.
J Am Chem Soc ; 135(6): 2044-7, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23331082

ABSTRACT

Subunit antigen-based vaccines can provide a number of important benefits over traditional vaccine candidates, such as overall safety. However, because of the inherently low immunogenicity of these antigens, methods for colocalized delivery of antigen and immunostimulatory molecules (i.e., adjuvants) are needed. Here we report a robust nanolipoprotein particle (NLP)-based vaccine delivery platform that facilitates the codelivery of both subunit antigens and adjuvants. Ni-chelating NLPs (NiNLPs) were assembled to incorporate the amphipathic adjuvants monophosphoryl lipid A and cholesterol-modified CpG oligodeoxynucleotides, which can bind His-tagged protein antigens. Colocalization of antigen and adjuvant delivery using the NiNLP platform resulted in elevated antibody production against His-tagged influenza hemagglutinin 5 and Yersinia pestis LcrV antigens. Antibody titers in mice immunized with the adjuvanted NLPs were 5-10 times higher than those observed with coadministration formulations and nonadjuvanted NiNLPs. Colocalized delivery of adjuvant and antigen provides significantly greater immune stimulation in mice than coadministered formulations.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Bacterial/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Lipoproteins/chemistry , Nanoparticles/chemistry , Pore Forming Cytotoxic Proteins/immunology , Vaccines/chemistry , Animals , Antigens, Bacterial/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Lipoproteins/immunology , Mice , Nickel/chemistry , Nickel/immunology , Pore Forming Cytotoxic Proteins/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Vaccines/immunology
10.
Front Cell Neurosci ; 17: 1287089, 2023.
Article in English | MEDLINE | ID: mdl-38026689

ABSTRACT

While there is a growing appreciation of three-dimensional (3D) neural tissues (i.e., hydrogel-based, organoids, and spheroids), shown to improve cellular health and network activity to mirror brain-like activity in vivo, functional assessment using current electrophysiology techniques (e.g., planar multi-electrode arrays or patch clamp) has been technically challenging and limited to surface measurements at the bottom or top of the 3D tissue. As next-generation MEAs, specifically 3D MEAs, are being developed to increase the spatial precision across all three dimensions (X, Y, Z), development of improved computational analytical tools to discern region-specific changes within the Z dimension of the 3D tissue is needed. In the present study, we introduce a novel computational analytical pipeline to analyze 3D neural network activity recorded from a "bottom-up" 3D MEA integrated with a 3D hydrogel-based tissue containing human iPSC-derived neurons and primary astrocytes. Over a period of ~6.5 weeks, we describe the development and maturation of 3D neural activity (i.e., features of spiking and bursting activity) within cross sections of the 3D tissue, based on the vertical position of the electrode on the 3D MEA probe, in addition to network activity (identified using synchrony analysis) within and between cross sections. Then, using the sequential addition of postsynaptic receptor antagonists, bicuculline (BIC), 2-amino-5-phosphonovaleric acid (AP-5), and 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX), we demonstrate that networks within and between cross sections of the 3D hydrogel-based tissue show a preference for GABA and/or glutamate synaptic transmission, suggesting differences in the network composition throughout the neural tissue. The ability to monitor the functional dynamics of the entire 3D reconstructed neural tissue is a critical bottleneck; here we demonstrate a computational pipeline that can be implemented in studies to better interpret network activity within an engineered 3D neural tissue and have a better understanding of the modeled organ tissue.

12.
J Vis Exp ; (181)2022 03 16.
Article in English | MEDLINE | ID: mdl-35377358

ABSTRACT

Subunit vaccines offer advantages over more traditional inactivated or attenuated whole-cell-derived vaccines in safety, stability, and standard manufacturing. To achieve an effective protein-based subunit vaccine, the protein antigen often needs to adopt a native-like conformation. This is particularly important for pathogen-surface antigens that are membrane-bound proteins. Cell-free methods have been successfully used to produce correctly folded functional membrane protein through the co-translation of nanolipoprotein particles (NLPs), commonly known as nanodiscs. This strategy can be used to produce subunit vaccines consisting of membrane proteins in a lipid-bound environment. However, cell-free protein production is often limited to small scale (<1 mL). The amount of protein produced in small-scale production runs is usually sufficient for biochemical and biophysical studies. However, the cell-free process needs to be scaled up, optimized, and carefully tested to obtain enough protein for vaccine studies in animal models. Other processes involved in vaccine production, such as purification, adjuvant addition, and lyophilization, need to be optimized in parallel. This paper reports the development of a scaled-up protocol to express, purify, and formulate a membrane-bound protein subunit vaccine. Scaled-up cell-free reactions require optimization of plasmid concentrations and ratios when using multiple plasmid expression vectors, lipid selection, and adjuvant addition for high-level production of formulated nanolipoprotein particles. The method is demonstrated here with the expression of a chlamydial major outer membrane protein (MOMP) but may be widely applied to other membrane protein antigens. Antigen effectiveness can be evaluated in vivo through immunization studies to measure antibody production, as demonstrated here.


Subject(s)
Chlamydia muridarum , Adjuvants, Immunologic , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Chlamydia muridarum/chemistry , Recombinant Proteins/genetics , Vaccine Development
13.
Front Toxicol ; 4: 983415, 2022.
Article in English | MEDLINE | ID: mdl-36032789

ABSTRACT

Fentanyl is one of the most common opioid analgesics administered to patients undergoing surgery or for chronic pain management. While the side effects of chronic fentanyl abuse are recognized (e.g., addiction, tolerance, impairment of cognitive functions, and inhibit nociception, arousal, and respiration), it remains poorly understood what and how changes in brain activity from chronic fentanyl use influences the respective behavioral outcome. Here, we examined the functional and molecular changes to cortical neural network activity following sub-chronic exposure to two fentanyl concentrations, a low (0.01 µM) and high (10 µM) dose. Primary rat co-cultures, containing cortical neurons, astrocytes, and oligodendrocyte precursor cells, were seeded in wells on either a 6-well multi-electrode array (MEA, for electrophysiology) or a 96-well tissue culture plate (for serial endpoint bulk RNA sequencing analysis). Once networks matured (at 28 days in vitro), co-cultures were treated with 0.01 or 10 µM of fentanyl for 4 days and monitored daily. Only high dose exposure to fentanyl resulted in a decline in features of spiking and bursting activity as early as 30 min post-exposure and sustained for 4 days in cultures. Transcriptomic analysis of the complex cultures after 4 days of fentanyl exposure revealed that both the low and high dose induced gene expression changes involved in synaptic transmission, inflammation, and organization of the extracellular matrix. Collectively, the findings of this in vitro study suggest that while neuroadaptive changes to neural network activity at a systems level was detected only at the high dose of fentanyl, transcriptomic changes were also detected at the low dose conditions, suggesting that fentanyl rapidly elicits changes in plasticity.

14.
Curr Opin Pharmacol ; 60: 255-260, 2021 10.
Article in English | MEDLINE | ID: mdl-34481335

ABSTRACT

Recent advances in microphysiological systems have made significant strides to include design features that reconstruct key elements found in the brain, and in parallel advance technologies to detect the activity of electrogenic cells that form neural networks. In particular, three-dimensional multielectrode arrays (3D MEAs) are being developed with increasing levels of spatial and temporal precision, difficult to achieve with current 2D MEAs, insertable MEA probes, and/or optical imaging of calcium dynamics. Thus, providing a means to monitor the flow of neural network activity within all three dimensions (X, Y, and Z) of the engineered tissue. In the last 6 years, 3D MEAs, using either bottom-up or top-down designs, have been developed to overcome the current technical challenges in monitoring the functionality of the in vitro systems. Herein, we will report on the design and application of novel 3D MEA prototypes for probing neural activity throughout the 3D neural tissue.


Subject(s)
Brain , Neurons , Calcium , Microelectrodes , Tissue Engineering
15.
Sci Rep ; 11(1): 19102, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580351

ABSTRACT

Animal models have expanded our understanding of temporal lobe epilepsy (TLE). However, translating these to cell-specific druggable hypotheses is not explored. Herein, we conducted an integrative insilico-analysis of an available transcriptomics dataset obtained from animals with pilocarpine-induced-TLE. A set of 119 genes with subtle-to-moderate impact predicted most forms of epilepsy with ~ 97% accuracy and characteristically mapped to upregulated homeostatic and downregulated synaptic pathways. The deconvolution of cellular proportions revealed opposing changes in diverse cell types. The proportion of nonneuronal cells increased whereas that of interneurons, except for those expressing vasoactive intestinal peptide (Vip), decreased, and pyramidal neurons of the cornu-ammonis (CA) subfields showed the highest variation in proportion. A probabilistic Bayesian-network demonstrated an aberrant and oscillating physiological interaction between nonneuronal cells involved in the blood-brain-barrier and Vip interneurons in driving seizures, and their role was evaluated insilico using transcriptomic changes induced by valproic-acid, which showed opposing effects in the two cell-types. Additionally, we revealed novel epileptic and antiepileptic mechanisms and predicted drugs using causal inference, outperforming the present drug repurposing approaches. These well-powered findings not only expand the understanding of TLE and seizure oscillation, but also provide predictive biomarkers of epilepsy, cellular and causal micro-circuitry changes associated with it, and a drug-discovery method focusing on these events.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy, Temporal Lobe/etiology , Pilocarpine/toxicity , Animals , Anticonvulsants/therapeutic use , Biomarkers/analysis , Datasets as Topic , Disease Models, Animal , Drug Discovery , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Gene Expression Regulation/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/pathology , Humans , Interneurons/drug effects , Interneurons/metabolism , Male , Mice , Pilocarpine/administration & dosage , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , RNA-Seq , Single-Cell Analysis , Temporal Lobe/drug effects , Temporal Lobe/pathology
16.
Front Pharmacol ; 12: 768461, 2021.
Article in English | MEDLINE | ID: mdl-34899322

ABSTRACT

A worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert. Here we discuss promising types of nanoparticles along with outcomes from nanoparticle-based vaccine preclinical studies against non-viral STIs including chlamydia, syphilis, gonorrhea, and recommendations for future nanoparticle-based vaccines against STIs.

17.
Vaccines (Basel) ; 9(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34358171

ABSTRACT

Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10-25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.

18.
Bioconjug Chem ; 21(7): 1321-30, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20586461

ABSTRACT

Nanolipoprotein particles (NLPs) are discoidal self-assembling membrane mimetics that have been primarily used as a platform for the solubilization and stabilization of membrane proteins. Nickel-chelating nanolipoprotein particles (NiNLPs) containing nickel-chelating lipids (Ni-lipid) for the targeted immobilization of His-tagged proteins hold promise as carriers of hydrophilic biological molecules for a range of applications. The effect of protein loading (i.e., the number of proteins bound per NiNLP) and Ni-lipid content on the time scales and kinetics of binding are important to various applications such as vaccine development, diagnostic imaging, and drug delivery. We have immobilized hexa-His-tagged LsrB, a Yersinia pestis transport protein, onto NiNLPs to examine the effect of protein binding stoichiometry and Ni-lipid content on the time scales and kinetics of protein binding by surface plasmon resonance (SPR). Data indicate that the dissociation half-time increases with Ni-lipid content up to a molar concentration of 35% and decreases as the number of bound protein per NiNLP increases. These findings indicate that the kinetics of protein binding are highly dependent on both the number of bound protein per NiNLP and Ni-lipid content.


Subject(s)
Bacterial Proteins/chemistry , Chelating Agents/chemistry , Histidine/chemistry , Lipoproteins/chemistry , Nanoparticles/chemistry , Nickel/chemistry , Bacterial Proteins/metabolism , Chelating Agents/metabolism , Histidine/metabolism , Kinetics , Lipids/chemistry , Lipoproteins/metabolism , Nickel/metabolism , Particle Size , Protein Binding , Recombinant Proteins/chemistry , Surface Plasmon Resonance , Yersinia pestis/chemistry
19.
Bioconjug Chem ; 21(6): 1018-22, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-20509624

ABSTRACT

Subunit antigens are attractive candidates for vaccine development, as they are safe, cost-effective, and rapidly produced. Nevertheless, subunit antigens often need to be adjuvanted and/or formulated to produce products with acceptable potency and efficacy. Here, we describe a simple method for improving the potency and efficacy of a recombinant subunit antigen by its immobilization on nickel-chelating nanolipoprotein particles (NiNLPs). NiNLPs are membrane mimetic nanoparticles that provide a delivery and presentation platform amenable to binding any recombinant subunit immunogens featuring a polyhistidine tag. A His-tagged, soluble truncated form of the West Nile virus (WNV) envelope protein (trE-His) was immobilized on NiNLPs. Single inoculations of the NiNLP-trE-His produced superior anti-WNV immune responses and provided significantly improved protection against a live WNV challenge compared to mice inoculated with trE-His alone. These results have broad implications in vaccine development and optimization, as NiNLP technology is well-suited to many types of vaccines, providing a universal platform for enhancing the potency and efficacy of recombinant subunit immunogens.


Subject(s)
Chelating Agents/chemistry , Encephalitis, Viral/prevention & control , Lipoproteins/chemistry , Nanoparticles/chemistry , Nickel/chemistry , Vaccines, Subunit/immunology , West Nile Fever/prevention & control , West Nile Virus Vaccines/immunology , Animals , Chelating Agents/administration & dosage , Encephalitis, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Mice , Time Factors , Vaccines, Subunit/chemistry , Viral Envelope Proteins/immunology , West Nile Fever/immunology , West Nile Virus Vaccines/administration & dosage , West Nile Virus Vaccines/chemistry
20.
Front Immunol ; 11: 1264, 2020.
Article in English | MEDLINE | ID: mdl-32714323

ABSTRACT

Subunit vaccines are theoretically safe and easy to manufacture but require effective adjuvants and delivery systems to yield protective immunity, particularly at critical mucosal sites such as the lung. We investigated nanolipoprotein particles (NLPs) containing the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) as a platform for intranasal vaccination against Bacillus anthracis. Modified lipids enabled attachment of disparate spore and toxin protein antigens. Intranasal vaccination of mice with B. anthracis antigen-MPLA-NLP constructs induced robust IgG and IgA responses in serum and in bronchoalveolar and nasal lavage. Typically, a single dose sufficed to induce sustained antibody titers over time. When multiple immunizations were required for sustained titers, specific antibodies were detected earlier in the boost schedule with MPLA-NLP-mediated delivery than with free MPLA. Administering combinations of constructs induced responses to multiple antigens, indicating potential for a multivalent vaccine preparation. No off-target responses to the NLP scaffold protein were detected. In summary, the NLP platform enhances humoral and mucosal responses to intranasal immunization, indicating promise for NLPs as a flexible, robust vaccine platform against B. anthracis and potentially other inhalational pathogens.


Subject(s)
Anthrax Vaccines/immunology , Anthrax/prevention & control , Bacillus anthracis/immunology , Nanoparticles , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Anthrax Vaccines/administration & dosage , Antibodies, Bacterial/immunology , Female , Lipid A/administration & dosage , Lipid A/analogs & derivatives , Lipid A/immunology , Mice , Mice, Inbred BALB C , Spores, Bacterial/immunology , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL